Skip to main content

Advertisement

Log in

Correlation between directed transverse flow and nuclear stopping around the energy of vanishing flow

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We aim to study correlation between directed transverse flow \(\langle P_{x}^{{\rm dir}} \rangle \) and nuclear stopping \(\langle R \rangle \) for asymmetric reactions both at Fermi and intermediate energies for the mass asymmetric reactions having total mass 80, 160 and 240 units. The mass asymmetry of reactions varies between 0 and 0.5. Our study reveals that at high incident energy, correlation between the directed transverse flow and nuclear stopping follows a linear behavior, while at low incident energy, it follows a parabolic behavior. This correlation between nuclear stopping and directed transverse flow is stout and is independent of the total mass for all asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Goyal and R K Puri Nucl. Phys. A 853 164 (2011)

    Article  ADS  Google Scholar 

  2. A Jain and S Kumar J. Phys. G Nucl. Part. Phys. 41 105105 (2014)

    Article  ADS  Google Scholar 

  3. T Gaitanos, M Colonna, M Di Toro and H H Wolter Phys. Lett. B 595 209 (2004)

    Article  ADS  Google Scholar 

  4. K Zbiri et al. Phys. Rev. C 75 034612 (2007)

    Article  ADS  Google Scholar 

  5. F Fu et al. Phys. Lett. B 666 359 (2008)

    Article  ADS  Google Scholar 

  6. X G Cao et al. Phys. Rev. C 81 061603(R) (2010)

    Article  ADS  Google Scholar 

  7. X F Luo et al. Indian J. Phys. 85 947 (2011)

    Article  ADS  Google Scholar 

  8. J Liu, W Guo, S Wang, W Zuo, Q Zhao and Y Yang Phys. Rev. Lett. 86 975 (2001)

    Article  ADS  Google Scholar 

  9. Y Yuan, Q Li, Z Li and F H Lui Phys. Rev. C 81 034913 (2010)

    Article  ADS  Google Scholar 

  10. V Kaur, S Kumar and R K Puri Nucl. Phys. A 861 37 (2011)

    Article  ADS  Google Scholar 

  11. G F Bertsch, W G Lynch and M B Tsang Phys. Lett. B 189 384 (1987)

    Article  ADS  Google Scholar 

  12. W Residrof et al. Phys. Rev. Lett. 92 232301 (2004)

    Article  ADS  Google Scholar 

  13. Y Zhang, Z Li and P Danielewicz Phys. Rev. C 75 034615 (2007)

    Article  ADS  Google Scholar 

  14. A Andronic, J Lukasik, W Residrof and W Trautman Eur. Phys. J. A 30 31 (2006)

    Article  ADS  Google Scholar 

  15. C Hartnack et al. Eur. Phys. J. A 1 151 (1998)

    Article  ADS  Google Scholar 

  16. C Hartnack, H Oeschler, Y Leifels, E L Bratkovskaya and J Aichelin Phys. Rep. 510 119 (2012)

    Article  ADS  Google Scholar 

  17. Y G Ma et al. Nucl. Phys. A 787 611 (2007)

    Article  ADS  Google Scholar 

  18. T Z Yan et al. Phys. Lett. B 638 50 (2006)

    Article  ADS  Google Scholar 

  19. J Wang et al. Nucl. Sci. Technol. 24 030501 (2013)

    Google Scholar 

  20. S Gautam, A D Sood, R K Puri and J Aichelin Phys. Rev. C 83 034606 (2011)

    Article  ADS  Google Scholar 

  21. S Kaur and R K Puri Phys. Rev. C 87 014620 (2013)

    Article  ADS  Google Scholar 

  22. S Kumar and S Kumar Chin. Phys. Lett. 27 062504 (2010)

    Article  ADS  Google Scholar 

  23. G Lehaut et al. Phys. Rev. Lett. 104 232701 (2010)

    Article  ADS  Google Scholar 

  24. H Stöcker, J A Maruhn and W Greiner Phys. Rev. Lett. 44 725 (1980)

    Article  ADS  Google Scholar 

  25. Y M Zheng, C M Ko, B A Li and B Zhang Phys. Rev. Lett. 83 2534 (1999)

    Article  ADS  Google Scholar 

  26. B A Li and A T Sustich Phys. Rev. Lett. 82 5004 (1999)

    Article  ADS  Google Scholar 

  27. J Gosset et al. Phys. Rev. Lett. 62 1251 (1989)

    Article  ADS  Google Scholar 

  28. Y G Ma, W Q Shen, J Feng and Y Q Ma Phys. Rev. C 48 R1492 (1993)

    Article  ADS  Google Scholar 

  29. G Q Zhang et al. Phys. Rev. C 84 034612 (2011)

    Article  ADS  Google Scholar 

  30. O Lopez et al. Phys. Rev. C 90 064602 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Department of Atomic Energy (DAE), Government of India (Grant No. 2012/37P/16/BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Suneel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubina, B., Anupriya, J. & Suneel, K. Correlation between directed transverse flow and nuclear stopping around the energy of vanishing flow. Indian J Phys 89, 1077–1083 (2015). https://doi.org/10.1007/s12648-015-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0672-1

Keywords

PACS No.

Navigation