Skip to main content
Log in

Effect of dissipated power due to antenna resistive heating on E- to H-mode transition in inductively coupled oxygen plasma

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The problem of the effective power input into plasma is investigated for the inductively coupled RF oxygen discharge operated at 13.56 MHz. The power significantly deviates especially at the E- to H-mode transition. In order to enlighten this phenomenon the UI characteristics of the discharge are recorded. With these data, we have recalculated the power deposited into plasma and determined the effective power losses due to the resistive antenna heating. The E–H mode transition is investigated in the pressure range from 10 to 200 Pa. With an increase of the working gas pressure, the threshold for the E–H transition moves towards the higher powers. The transition exhibits a hysteresis for the pressures higher than 10 Pa. When the dissipated power due to the antenna resistive heating is taken into account, the characteristic hysteresis profile skews towards lower power as compared to the case of taking generator power as a relevant parameter. This means that the E-mode is strongly affected by the way the power is obtained, while for the H-mode the generator power can be considered as a relatively good external parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M A Lieberman and A J Lichtenberg Principles of plasma discharge and materials processing (Hoboken: Wiley) (2005)

    Book  Google Scholar 

  2. T Makabe and Z L Petrović Plasma electronics: applications in microelectronic device fabrication (New York: Taylor and Francis) (2006)

    Google Scholar 

  3. U Cvelbar et al. Appl. Surf. Sci. 253 8669 (2007)

    Article  ADS  Google Scholar 

  4. U Cvelbar, S Pejovnik, M Mozetic and A Zalar Appl. Surf. Sci. 210 255 (2003)

    Article  ADS  Google Scholar 

  5. B Denis, S Steves, E Semmler, N Bibinov, W Novak and P Awakowicz Plasma Process. Polym. 9 619 (2012)

    Article  Google Scholar 

  6. V Ilic et al. Ind. Eng. Chem. Res. 49 7287 (2010)

    Article  Google Scholar 

  7. M Laroussi Plasma Process. Polym. 2 391 (2005)

    Article  Google Scholar 

  8. D Mihailović et al. Cellulose 18 811 (2011)

    Article  Google Scholar 

  9. N Puač, Z Lj Petrović, S Živković, Z Giba, D Grubišić and A Đorđević Plasma Process. Polym. (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA) Chapter 15 p 193 (2005)

  10. N Puač et al. J. Phys. D Appl. Phys. 39 3514 (2006)

    Article  ADS  Google Scholar 

  11. M Modic, I Junkar, A Vesel and M Mozetic Surf. Coat. Technol. 213 98 (2012)

    Article  Google Scholar 

  12. J Vasiljević et al. Cellulose 20 277 (2012)

    Article  Google Scholar 

  13. Z Peršin, M Devetak, I Drevenšek-Olenik, A Vesel, M Mozetič and K Stana-Kleinschek Carbohydr. Polym. 97 143 (2013)

    Article  Google Scholar 

  14. K H Karstensen et al. Environ. Sci. Policy 9 577 (2006)

    Article  Google Scholar 

  15. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

  16. A Kaplan, H Büyükuslu, E Tel, A Aydin and M H Bölükdemir Indian J. Phys. 85 1615 (2011)

  17. U Kortshagen, N D Gibson and J E Lawler J. Phys. D Appl. Phys. 29 1224 (1996)

    Article  ADS  Google Scholar 

  18. Y Miyoshi, Z L Petrovic and T Makabe J. Phys. D Appl. Phys. 35 454 (2002)

    Article  ADS  Google Scholar 

  19. I M El-Fayoumi, I R Jones and M M Turner J. Phys. D Appl. Phys. 31 3082 (1998)

    Article  ADS  Google Scholar 

  20. K N Ostrikov, S Xu and M Y Yu J. Appl. Phys. 88 2268 (2000)

    Article  ADS  Google Scholar 

  21. K Suzuki, K Nakamura, H Ohkubo and H Sugai Plasma Sources Sci. Technol. 7 13 (1998)

    Article  ADS  Google Scholar 

  22. G Cunge, B Crowley, D Vender and M M Turner Plasma Sources Sci. Technol. 8 576 (1999)

    Article  ADS  Google Scholar 

  23. N Nimje, S Dubey and S Ghosh Indian J. Phys. 84 1567 (2010)

  24. Y C Wang, E C Benck, M Misakian, M Edamura and J K Olthoff J. Appl. Phys. 87 2114 (2000)

    Article  ADS  Google Scholar 

  25. S Xu, K N Ostrikov, W Luo and S Lee J. Vac. Sci. Technol. A 18 2185 (2000)

    Article  ADS  Google Scholar 

  26. Y Chen, Z G Guo, X M Zhu, Z G Mao and Y K Pu J. Phys. D Appl. Phys. 40 5112 (2007)

    Article  ADS  Google Scholar 

  27. Y Hayashi, Y Mitsui, T Tatsumi and T Makabe New J. Phys. 13 073025 (2011)

    Article  ADS  Google Scholar 

  28. M Satoshi, H Yuichiro and M Toshiaki Plasma Sources Sci. Technol. 19 055007 (2010)

    Article  Google Scholar 

  29. M Zaka-Ul-Islam, K Niemi, T Gans and D O’Connell Appl. Phys. Lett. 99 041501 (2011)

    Article  ADS  Google Scholar 

  30. R Zaplotnik, A Vesel and M Mozetic EPL 95 55001 (2011)

    Article  ADS  Google Scholar 

  31. A M Daltrini, S A Moshkalev, T J Morgan, R B Piejak and W G Graham Appl. Phys. Lett. 92 061504 (2008)

  32. P A Miller, G A Hebner, K E Greenberg, P D Pochan and B P Aragon J. Res. Natl. Inst. Stan. 100 427 (1995)

    Article  Google Scholar 

  33. J Hopwood Plasma Sources Sci. Technol. 3 460 (1994)

    Article  ADS  Google Scholar 

  34. M M Turner and M A Lieberman Plasma Sources Sci. Technol. 8 313 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the AdFutura and Slovenian Research Agency (ARRS), Slovenia and by the Ministry of Education and Science Serbia through project III41011 and ON171037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Cvelbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puač, N., Lazović, S., Zaplotnik, R. et al. Effect of dissipated power due to antenna resistive heating on E- to H-mode transition in inductively coupled oxygen plasma. Indian J Phys 89, 635–640 (2015). https://doi.org/10.1007/s12648-014-0615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0615-2

Keywords

PACS Nos.

Navigation