Skip to main content

Comparison of N-doped ZnO and N–Al codoped ZnO thin films deposited by pulsed filtered cathodic vacuum arc deposition

Abstract

N-doped ZnO and N–Al codoped ZnO films are deposited onto glass substrate at room temperature by pulsed filtered cathodic vacuum arc deposition system. The films are characterized by X-ray diffraction, Raman spectra, UV–Vis–NIR spectrophotometer, atomic force microscopy (AFM) and Hall measurements. Films are textured along the (002) direction. AFM images reveal that surface of N–Al codoped ZnO film grown at RT is smoother than that of the N-doped ZnO (ZnO:N) film. Optical band gap of the N–Al codoped ZnO film is higher than that of N-doped ZnO (ZnO:N) film. When N–Al codoped ZnO film is compared to N-doped ZnO film, it is revealed that N–Al codoped ZnO film has a lower hole mobility of 18 cm2/V s, a higher hole concentration of 1.205 × 1019 cm−3 and thus a lower electrical resistivity of 2.730 × 10−2 ohm cm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M S Kim et al. J. Lumin. 132 2581 (2012)

    Article  ADS  Google Scholar 

  2. M S Kim et al. Vacuum 86 1373 (2012)

    Article  Google Scholar 

  3. E Alves et al. Vacuum 83 1274 (2009)

    Article  Google Scholar 

  4. A Marzouki et al. J. Cryst. Growth 312 3063 (2010)

    Article  ADS  Google Scholar 

  5. Y Zhu et al. Appl. Surf. Sci. 255 6201 (2009)

    Article  ADS  Google Scholar 

  6. B M Keyes, L M Gedvilas, X Li and T J Coutts J. Cryst. Growth 281 297 (2005)

    Article  ADS  Google Scholar 

  7. Y Zhang, J Lu, L Chen and Z Ye Solid State Commun. 143 562 (2007)

    Article  ADS  Google Scholar 

  8. A Kobayashi, O F Sankey and J D Dow Phys. Rev. B 28 946 (1983)

    Article  ADS  Google Scholar 

  9. T Yamamoto and H K Yoshida Mater. Res. Soc. Proc. 623 223 (2000)

  10. T Yamamoto and H K Yoshida J. Crystal Growth 214/215 552 (2000)

  11. T Yamamoto and H K Yoshida Jpn. J. Appl. Phys. 38 L166 (1999)

  12. T Yamamoto Thin Solid Films 420421 100 (2002)

    Article  Google Scholar 

  13. L Zhu, Z Ye, F Zhuge, G Yuan and J Lu Surf. & Coat. Techno. 198 354 (2005)

    Article  Google Scholar 

  14. S Kalyanaraman, R Thangavel and R Vettumperumal J. Phys. Chem. Solids 74 504 (2013)

    Article  ADS  Google Scholar 

  15. S L Yao, J D Hong, C T Lee, C Y Ho and D S Liu J. Appl. Phys. 109 103504 (2011)

    Article  ADS  Google Scholar 

  16. Z W Liu, S W Yeo and C K Ong J. Mater. Res. 22 2668 (2007)

    Article  ADS  Google Scholar 

  17. C Zhang, X Li, J Bian, W Yu and X Gao Solid State Commun. 132 75 (2004)

    Article  ADS  Google Scholar 

  18. R W Chuang, R-X Wu, L-W Lai and C-T Lee Appl. Phys. Lett. 91 231113 (2007)

    Article  ADS  Google Scholar 

  19. S Bhushan and A Shrivastava Indian J. Phys. 84 1517 (2010)

  20. J K Dangbégnon, K Talla, L Vines and J R Botha J. Cryst. Growth 324 243 (2011)

    Article  ADS  Google Scholar 

  21. T Prasada Rao, M C Santhosh Kumar and V Ganesan Indian J. Phys. 85 1381 (2011)

    Article  ADS  Google Scholar 

  22. S H Park et al. J. Cryst. Growth 311 2167 (2009)

    Article  ADS  Google Scholar 

  23. X Wang et al. J. Lumin. 122123 165 (2007)

    Article  Google Scholar 

  24. X Zhu et al. Opt. Commun. 283 2695 (2010)

    Article  ADS  Google Scholar 

  25. J H Leem, D H Lee and S Y Lee Thin Solid Films 518 1238 (2009)

    Article  ADS  Google Scholar 

  26. Z Huang, P Luo, W Chen, S Pan and D Chen Vacuum 89 220 (2013)

    Article  ADS  Google Scholar 

  27. S Elzwawi et al. Phys. B 407 2903 (2012)

    Article  ADS  Google Scholar 

  28. X L Xu, S P Lau and B K Tay Thin Solid Films 398399 244 (2001)

    Article  Google Scholar 

  29. Y G Wang et al. J. Appl. Phys. 94 1597 (2003)

    Article  ADS  Google Scholar 

  30. H Takikawa, K Kimura, R Miyano and T Sakakibara Vacuum 65 433 (2002)

    Article  Google Scholar 

  31. T David, S Goldsmith and R L Boxman Thin Solid Films 447448 61 (2004)

    Article  Google Scholar 

  32. E Şenadim, H Kavak and R Esen J. Phys.:Cond. Matt. 18 6391 (2006)

    ADS  Google Scholar 

  33. S Anders et al. Surf. Coat. Technol. 76/77 167 (1995)

    Article  Google Scholar 

  34. N H Erdogan, K Kara, H Ozdamar, R Esen and H Kavak Appl. Surf. Sci. 271 70 (2013)

    Article  ADS  Google Scholar 

  35. E Şenadim Tüzemen, H Kavak and R Esen Phys. B: Cond. Matt. 390 366 (2007)

    Article  ADS  Google Scholar 

  36. Y J Zeng et al. Appl. Surf. Sci. 249 203 (2005)

    Article  ADS  Google Scholar 

  37. J G Lu, Z Z Ye, F Zhuge, Y J Zeng, B H Zhao and L P Zhu Appl. Phys. Lett. 85 3134 (2004)

    Article  ADS  Google Scholar 

  38. P Singh, A Kumar, Deepak and D Kaur J. Cryst. Growth 306 303 (2007)

  39. B Yang, P Feng, A Kumar, R S Katiyar and M Achermann J. Phys. D: Appl. Phys. 42 195402 (2009)

    Article  ADS  Google Scholar 

  40. M-L Tu, Y-K Su and C-Y Ma J. Appl. Phys. 100 053705 (2006)

    Article  ADS  Google Scholar 

  41. L L Kerr, X Li, M Canepa and A J Sommer Thin Solid Films 515 5282 (2007)

    Article  ADS  Google Scholar 

  42. J C Tauc Amorphous and liquid semiconductors (New York: Plenum Press) (1974)

    Book  Google Scholar 

  43. F Urbach Phys. Rev. 92 1324 (1953)

    Article  ADS  Google Scholar 

  44. J Wang et al. J. Phys. Cond. Matter 20 075220 (2008)

    Article  ADS  Google Scholar 

  45. B K Meyer et al. Phys. Status Solidi (b) 241 231 (2004)

    Article  ADS  Google Scholar 

  46. E Şenadım, S Eker, H Kavak and R Esen Solid State Commun. 139 479 (2006)

    Article  ADS  Google Scholar 

  47. J G Lu et al. Appl. Surf. Sci. 245 109 (2005)

    Article  ADS  Google Scholar 

  48. S Gangil et al. J. Cryst. Growth 298 486 (2007)

    Article  ADS  Google Scholar 

  49. S Dhara and P K Giri Thin Solid Films 520 5000 (2012)

    Article  ADS  Google Scholar 

  50. S Chakrabarti et al. Superlattices Microstruct. 42 21 (2007)

    Article  ADS  Google Scholar 

  51. Y Lu, Z Ye, Y Zeng, W Xu, L Zhu and B Zhao Opt. Mater. 29 1612 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Authors thank Ozge Baglayan from Anadolu University for Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senadim Tuzemen, E., Kara, K., Takci, D.K. et al. Comparison of N-doped ZnO and N–Al codoped ZnO thin films deposited by pulsed filtered cathodic vacuum arc deposition. Indian J Phys 89, 337–345 (2015). https://doi.org/10.1007/s12648-014-0569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0569-4

Keywords

  • Absorption coefficient
  • ZnO
  • Hall effect
  • Raman spectra

PACS Nos.

  • 78.20.Ci
  • 77.55.hf
  • 73.50.Jt
  • 78.30.Fs