Indian Journal of Physics

, Volume 89, Issue 3, pp 209–216 | Cite as

A comprehensive study of boron nitride nanotubes multiple synthesis from a single precursor

  • P. AhmadEmail author
  • M. U. Khandaker
  • Y. M. Amin
Original paper


Importance of boron nitride nanotubes due to its applications in the fields of biomedical, microelectronic mechanical systems and solid state neutron detectors has greatly increased the demand for high quality and large scale synthesis of boron nitride nanotubes. The idea of using a single precursor for multiple synthesis has been utilized and boron nitride nanotubes are synthesized from fresh as well as residual material left after first and second experimental runs. For the first time, experimental results are characterized and analyzed for their size, morphology and quality of the final product. Results thus obtained are likely to be steps toward the high yield and large scale synthesis of boron nitride nanotubes.


BNNTs CNTs Residual materials Synthesis 





We are extremely grateful to Prof. Dr. Norani Muti Mohamed, Director of COINN and MOR Nanotechnology, University of Technology PETRONAS Malaysia for providing Lab and characterization facilities. We are also grateful to Skim Bright Spark Program, University of Malaya 50603 Kuala Lumpure Malaysia for providing funds and facilities for our research work.

Supplementary material

12648_2014_545_MOESM1_ESM.docx (10.8 mb)
Supplementary material 1 (DOCX 11076 kb)


  1. [1]
    J Lauret et al. Phys. Rev. Lett. 94 037405 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    S Mitra et al. Indian J.Phys. 85 649 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    P Jaffrennou et al. Chem. Phys. Lett. 442 372 (2007).ADSCrossRefGoogle Scholar
  4. [4]
    C Zhi, Y Bando, C Tang, D Golberg, R Xie and T Sekigushi Appl. Phys. Lett. 86 213110 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    S Karan, D Dutta Majumder and A Goswami Indian J.Phys. 86 667 (2012).ADSCrossRefGoogle Scholar
  6. [6]
    Y Huang et al. Nanotechnology 20 085705 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    E Purushotham and N G Krishna Indian J.Phys. 88 157 (2014).CrossRefGoogle Scholar
  8. [8]
    M Ishigami, S Aloni and A Zettl AIP Conf. Proc. Art. 94 (2003).Google Scholar
  9. [9]
    F Taleshi, A A Hosseini, M Mohammadi and M Pashaee Indian J.Phys. 87 873 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    F Taleshi and A A Hosseini Indian J.Phys. 87 425 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    A Rubio, J L Corkill and M L Cohen Phys. Rev. B 49 5081 (1994).ADSCrossRefGoogle Scholar
  12. [12]
    N G Chopra et al. Science 269 966 (1995).ADSCrossRefGoogle Scholar
  13. [13]
    D Golberg, Y Bando, C Tang and C Zhi Adv. Mater. 19 2413 (2007).CrossRefGoogle Scholar
  14. [14]
    X Blase, A Rubio, S Louie and M Cohen Europhys. Lett. 28 335 (1994).ADSCrossRefGoogle Scholar
  15. [15]
    C H Lee, M Xie, V Kayastha, J Wang and Y K Yap Chem. Mat. 22 1782 (2010).CrossRefGoogle Scholar
  16. [16]
    A Maguer, E Leroy, L Bresson, E Doris, A Loiseau and C Mioskowski J. Mater. Chem. 19 1271 (2009).CrossRefGoogle Scholar
  17. [17]
    P Ahmad, NM Mohamed and Z A Burhanudin AIP Conf. Proc. Art. 535 (2012).Google Scholar
  18. [18]
    C Zhi, Y Bando, C Tang and D Golberg Mater. Sci. Eng. R- Rep. 70 92 (2010).CrossRefGoogle Scholar
  19. [19]
    R Ma, Y Bando and T Sato Chem. Phys. Lett. 337 61 (2001).ADSCrossRefGoogle Scholar
  20. [20]
    C Zhi, Y Bando, C Tan and D Golberg Solid State Commun. 135 67 (2005).ADSCrossRefGoogle Scholar
  21. [21]
    A Pakdel, C Zhi, Y Bando, T Nakayama and D Golberg Nanotechnology 23 215601 (2012).ADSCrossRefGoogle Scholar
  22. [22]
    C H Lee, J Wang, VK Kayatsha, J Y Huang and Y K Yap Nanotechnology 19 455605 (2008).ADSCrossRefGoogle Scholar
  23. [23]
    D Seo et al. J. Ind. Eng. Chem. 19 1117 (2013).Google Scholar
  24. [24]
    D Özmen, N A Sezgi and S Balcı Chem. Eng. J. 219 28 (2013).Google Scholar
  25. [25]
    A Pakdel, X Wang, Ybando and D Golberg Acta Mater. 61 1266 (2013).Google Scholar
  26. [26]
    C Tang, Y Bando and T Sato Chem. Phys. Lett. 362 185 (2002).ADSCrossRefGoogle Scholar
  27. [27]
    C Tang, Y Bando, T Sato and K Kurashima Chem. Commun 1290 (2002).Google Scholar
  28. [28]
    S Balcı, N Sezgi and E Eren I&ECR 51 11091 (2012).Google Scholar
  29. [29]
    J Kim, S Lee, D Seo and Y S Seo Mater. Chem. Phys 137 182 (2012).CrossRefGoogle Scholar
  30. [30]
    J Wang et al. J. Solid State Chem. 184 2478 (2011).ADSCrossRefGoogle Scholar
  31. [31]
    A E Tanur, J Wang, A L M Reddy, D N Lamont, Y K Yap and G C Walker J. Phys. Chem. B 117 16 (2013).CrossRefGoogle Scholar
  32. [32]
    H Ghassemi, C Lee, Y Yap and R Yassar J. Appl. Phys. 108 024314 (2010).ADSCrossRefGoogle Scholar
  33. [33]
    S Sinnott et al. Chem. Phys. Lett. 315 25 (1999).ADSCrossRefGoogle Scholar
  34. [34]
    C Y Su et al. J. Phys. Chem. C 113 14732 (2009).CrossRefGoogle Scholar
  35. [35]
    B P Martins Frontiers in superconductivity research (New York : Nova Publishers) (2003).Google Scholar
  36. [36]
    R Arenal et al. Nano Lett. 6 1812 (2006).ADSCrossRefGoogle Scholar
  37. [37]
    C Y Zhi et al. J. Phys. Chem. B 110 1525 (2006).CrossRefGoogle Scholar
  38. [38]
    L Guo and R N Singh Physica E 41 448 (2009).ADSCrossRefGoogle Scholar
  39. [39]
    B Fakrach, A Rahmani, H Chadli, K Sbai and J L Sauvajol Physica E 41 1800 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2014

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science University of MalayaKuala LumpurMalaysia

Personalised recommendations