Skip to main content
Log in

Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nanocrystalline (single and multiwall) carbon nanotube reinforced silver nanocomposites are successfully synthesized by a modified molecular level mixing method. These materials are subsequently sintered up to 800 °C in inert atmosphere for 12 h. To elucidate the effect of sintering, micro-structural, mechanical and electrical properties of fabricated nanocomposites are evaluated before and after sintering. Scanning and transmission electron microscopic characterization have revealed that the carbon nanotubes are embedded, anchored and homogenously dispersed in silver matrix. Measured hardness and Young’s modulus of fabricated nanocomposites are increased by 20–30 % after sintering. The carbon nanotube reinforcement has also improved electrical conductivity of low conducting nano-silver matrix before sintering. However, negative reinforcement effect is observed in high conducting bulk silver matrix after sintering. Comparatively improved mechanical and electrical properties of single wall carbon nanotube reinforced nanocomposites than multiwall nanotube reinforced nanocomposite are observed, which are correlated with high aspect ratio and larger effective contact surface area of single wall carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E Purushotham and N G Krishna Indian J. Phys. 88 157 (2014)

    Article  Google Scholar 

  2. S Vijayakumar and S Ganesan Indian J. Phys. 86 989 (2012)

    Article  ADS  Google Scholar 

  3. M R Vaezi, S K Shendy and T Ebadzadeh Indian J. Phys. 86 9 (2012)

    Article  ADS  Google Scholar 

  4. J Sleziona, J Wieczorek and M Dyzia J. Ach. Mater. Manufac. Eng. 17 1 (2006)

    Google Scholar 

  5. C F Wang, F Yi and X J Zhang Acta Metall. Sin. 7 157 (1994)

    Google Scholar 

  6. M Endo, T Hayashi, Y A Kim, M Torrens and M S Dresselhaus Trans. R. Soc. Lond. A 362 2223 (2004)

    Article  ADS  Google Scholar 

  7. G Broza Chem. Chemic. Tech. 4 35 (2010)

    Google Scholar 

  8. S R Bakshi and D Lahiri Inter. Mater. Rev. 55 41 (2010)

    Article  Google Scholar 

  9. Y Feng, H LYuan and M Zhang Mater. Character. 55 211 (2005)

    Article  Google Scholar 

  10. W M Daoush, B K Lim, D H Nam and S H Hong J. Exp. Nanosci. 9 588 (2012)

    Article  Google Scholar 

  11. M Torrens Inter. Mater. Rev. 49 325 (2004)

    Article  Google Scholar 

  12. S I Cha, K T Kim, S N Arshad, C B Mo and S H Hong Adv. Mater. 17 1377 (2005)

    Article  Google Scholar 

  13. H Pal, V Sharma, R Kumar and N Thakur Z. Naturfor. 67a 679 (2012)

    Article  Google Scholar 

  14. W C Oliver and G M Pharr J. Mater. Res. 7 1564 (1992)

    Article  ADS  Google Scholar 

  15. D A Lucca, K Herrmann and M J Lopfstein CIRP-Annals-Manufact. Techno. 59 803 (2010)

    Article  Google Scholar 

  16. J Z Liao, J J Pang and M J Tan Key Eng. Mater. 447 549 (2010)

    Article  Google Scholar 

  17. H Kwon, S Cho, M Leparoux and A Kawasaki Nanotechnology 23 225704 (2012)

    Article  ADS  Google Scholar 

  18. H Li, A Misra, Y Zhu, Z Horita, C C Koch and T G Holesinger Mater. Sci. Eng. A 523 60 (2009)

    Article  Google Scholar 

  19. V T Pham et al. Adv. Nat. Sci. Nanosci. Nanotechnol. 2 015006 (2011)

    Article  ADS  Google Scholar 

  20. T Laha and A Agarwal Mater. Sci. Eng. A 480 323 (2008)

    Article  Google Scholar 

  21. H Li et al. App. Phy. Let. 95 071907(2009)

    Article  ADS  Google Scholar 

  22. W M Daoush, B K Lim, C B Mo, D H Nam and S H Hong Mat. Sci. Eng. A 513 247 (2009)

    Article  Google Scholar 

  23. O Hjortstam, P Isberg, S Soderholm and H Dai App. Phys. A 78 1175 (2004)

    Article  ADS  Google Scholar 

  24. S H Baik et al. Solid state Pheno. 120 285 (2010)

    Article  ADS  Google Scholar 

  25. B K Lim, C B Mo, D H Nam and S H Hong J. Nanosci. Nanotech. 10 78 (2010)

    Article  Google Scholar 

  26. Q Chen, US Patent 7651766B2, university of central Florida. (2005)

  27. C L Xu, B Q Wei, R Z Ma, J Liang, X K Ma and D H Wu Carbon 37 855 (2009)

    Article  Google Scholar 

  28. Y Peng and Q F Chen Nano. Res. Lett. 7 195 (2012)

    Article  Google Scholar 

  29. S M Uddin et al. Comp. Sci. Techno. 70 2253 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from Department of Science and Technology [Project-SR/FTP/PS-054/2011(G)], India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, H., Sharma, V. Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites. Indian J Phys 89, 217–224 (2015). https://doi.org/10.1007/s12648-014-0539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0539-x

Keywords

PACs Nos.

Navigation