Skip to main content

Advertisement

Log in

Structural properties of Alumnum nitride compound

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural properties of Alumnum nitride in wurtzite, zinc-blende and rock-salt phases have been investigated by Full Potential-Linearized Augmented Plane Waves method based on Density Functional Theory within Local Density Approximation and seven Generalized Gradient schemes. It is found that, Alumnum nitride in wurtzite phase is the stable ground state structure and makes a transition to rock-salt phase at a low transition pressure (11.54 GPa). According to present total energy calculations, zinc-blende phase of Alumnum nitride also makes a transition to rock-salt phase, at a low transition pressure (10.17 GPa). Generalized Gradient functionals of Perdew-Wang-Engel-Vosko and Perdew-Burke-Ernzerhof are found to be more successful than other approximations considered in this work for providing the closest values of the structural features, such as, lattice constants, bulk moduli, first order pressure derivatives of bulk moduli and cohesive energies of Alumnum nitride three phases to available experimental ones. Although Generalized Gradient approaches of Perdew-Wang-Engel-Vosko, Perdew-Burke-Ernzerhof, Becke-Perdew-Wang and Perdew-Burke-Ernzerhof (revised) are found to be accurate schemes for elastic constants of rock-salt AlN, only Perdew-Wang-Engel-Vosko and Perdew-Burke-Ernzerhof functionals are observed to be more successful than the other schemes for supplying accurately both \(C_{11}\) and \(C_{12}\) of zinc-blende Alumnum nitride structure. Perdew-Wang-Engel-Vosko functional is observed to be superior to Perdew-Burke-Ernzerhof for elastic constants of wurtzite Alumnum nitride structure. Elastic constants of wurtzite Alumnum nitride obtained by self Perdew-Wang-Engel-Vosko approach and Martin’s transformation calculations in which elastic constants of zinc-blende Alumnum nitride are calculated with Perdew-Wang-Engel-Vosko scheme, are very close to the experimental ones. Hence, functional of Perdew-Wang-Engel-Vosko is decided to be the most accurate approximation among Local Density Approximation and other Generalized Gradient schemes considered in this work for all structural properties of Alumnum nitride three phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C G Van de Walle Wide band gap semiconductors (North Holland: Elsevier Science Publishers B V) (1993)

  2. T Kawashima et al. J. Cryst. Growth 272 270 (2004)

    Article  ADS  Google Scholar 

  3. A BenMoussa et al. Diam. Relat. Mater. 18 860 (2009)

    Article  ADS  Google Scholar 

  4. J Li et al. Appl. Phys. Lett. 83 5163 (2003)

    Article  ADS  Google Scholar 

  5. M P Thompson, G W Auner, T S Zheleva, K A Jones, S J Simko and J N Hilfiker J. Appl. Phys. 89 3331 (2001)

    Article  ADS  Google Scholar 

  6. J H Edgar Properties of Group III Nitrides (London: IEE INSPEC) (1994)

  7. R Thapa and B Saha Indian J. Phys. 84 1347 (2010)

    Article  ADS  Google Scholar 

  8. S Iwama, K Hayakawa and T Arizumi J. Cryst. Growth 56 265 (1982)

    Article  ADS  Google Scholar 

  9. I Petrov, E Mojab, R C Powell, J E Greene, L Hutman and J -E Sudgren Appl. Phys. Lett. 60 2491 (1992)

    Article  ADS  Google Scholar 

  10. M Ueno, A Onodera, O Shimomura and K Takemura Phys. Rev. B45 10123 (1992)

    Article  ADS  Google Scholar 

  11. H Okumura et al. J. Cryst. Growth 189 390 (1998)

    Article  ADS  Google Scholar 

  12. S Uehara, T Masamoto, A Onodera, M Ueno, O Shimomura and K Takemura J. Phys. Chem. Solids 58 2093 (1977)

    Article  Google Scholar 

  13. H Vollstádt, E Ito, M Akaishi, S Akimoto and O Fukunaga Proc. Jpn. Acad. B 66 7 (1990)

    Article  Google Scholar 

  14. Q Xia, H Xia and A L Ruoff J. Appl. Phys. 73 8198 (1993)

    Article  ADS  Google Scholar 

  15. F J Manjón, D Errandonea, N Garro, A H Romero, J Serrano and M Kuball Phys. Status Solidi b 244 42 (2007)

    Article  ADS  Google Scholar 

  16. P E Van Camp, V E Van Doren and J T Devreese Phys. Rev. B44 9056 (1991)

    Article  ADS  Google Scholar 

  17. N E Christensen and I Gorczyca Phys. Rev. B50 4397 (1994)

    Article  ADS  Google Scholar 

  18. J Serrano, A Rubio, E Hernández, A Muñoz and A Mujica Phys. Rev. B62 16612 (2000)

    Article  ADS  Google Scholar 

  19. F Peng, D Chen, H Fu and X Cheng Physica B 403 4259 (2008)

    Article  ADS  Google Scholar 

  20. S Goumri-Said, M Kanoun, A E Merad, G Merad and H Aourag Chem. Phys. 302 135 (2004)

    Article  ADS  Google Scholar 

  21. Y Ö Çifçi, K Çolakoğlu and E Deligöz Phys. Status Solid c 4 234 (2007)

  22. M Durandurdu J. Phys. Chem. Solids 69 2894 (2008)

    Article  ADS  Google Scholar 

  23. U P Verma and P S Bisht Solid State Sci. 12 665 (2010)

    Article  ADS  Google Scholar 

  24. M E Sherwin and T J Drummond J. Appl. Phys. 69 8423 (1991)

    Article  ADS  Google Scholar 

  25. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k, An Augmented-Plane-Wave + Local Orbitals Program for Calculating Crystal Properties (Wien Austria: Academic ISBN \(3-9501031-1-2\)) (2001)

  26. J P Perdew and Y Wang Phys. Rev. B45 13244 (1992)

    Article  ADS  Google Scholar 

  27. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  28. E Engel and S H Vosko Phys. Rev. B47 13164 (1993)

    Article  ADS  Google Scholar 

  29. J P Perdew and Y Wang Phys. Rev. B33 8800 (1986)

    Article  ADS  Google Scholar 

  30. Z Wu and R E Cohen Phys. Rev. B73 235116 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. P Haas, F Tran, P Blaha and K Schwarz Phys. Rev. B83 205117 (2011)

    Article  ADS  Google Scholar 

  32. A D Becke Phys. Rev. A38 3098 (1988)

    Article  ADS  Google Scholar 

  33. J P Perdew et al. Phys. Rev. B46 6671 (1992)

    Article  ADS  Google Scholar 

  34. Y Zhang and W Yang Phys. Rev. Lett 80 890 (1998)

    Article  ADS  Google Scholar 

  35. R Mohammad and Ş Katırcıoğlu Condens. Mater Phys. 14 23701 (2011)

    Article  Google Scholar 

  36. R M Martin Phys. Rev. B6 4546 (1972)

    Article  ADS  Google Scholar 

  37. F D Murnaghan Proc. Natl. Acad. Sci. 30 244 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. D D Wagman, W H Evans, V B Parker, I Halow, S M Baily and R H Shumm Selected Values of Chemical Thermodynamics Properties, Tables for the First Thirty-Four Elements in the Standard Order of Arrangment (Natl. Bur. Stand. Tech. Note) (Washington: U S GPO) Vol 270–273 (1968)

  39. A Rubio, J L Corkill, M L Cohen, E L Shirley and S G Louie Phys. Rev. B48 11810 (1993)

    Article  ADS  Google Scholar 

  40. A Satta, V Fiorentini, A Bosin and F Meloni Gallium Nitride and Related Materials (eds) R D Dupuis, J A Edmond, F A Ponce and S Nakamura (Pittsburgh: Materials Research Society) Vol 395 p 515 (1996)

  41. M B Nardelli, K Rapcewicz, E L Briggs, C Bungaro and J Bernholc III-V Nitrides (eds) F A Ponce, T D Moustakas, I Akasaki and B A Monemar (Pittsburgh: Materials Research Society) Vol 449 p 893 (1997)

  42. M Van Schilfgaarde, A Sher and A -B Chen J. Cryst. Growth 178 8 (1997)

    Article  ADS  Google Scholar 

  43. K Karch and F Bechstedt Phys. Rev. B56 7404 (1997)

    Article  ADS  Google Scholar 

  44. Ma G M Armenta, A Reyes-Serrato and M A Borja Phys. Rev. B62 4890 (2000)

    ADS  Google Scholar 

  45. C Stampfl and C G Van de Walle Phys. Rev. B59 5521 (1999)

    Article  ADS  Google Scholar 

  46. A Ferreira da Silvaa, N S Dantasa, J S de Almeidad, R Ahuja and C Persson J. Cryst. Growth 281 151 (2005)

  47. W Feng, S Cui, H Hu, W Zhao and Z Gong Physica B 405 555 (2010)

    Article  ADS  Google Scholar 

  48. A J Wang et al. Comp. Mater. Sci. 48 705 (2010)

    Article  Google Scholar 

  49. S Bağcı, S Duman, H M Tütüncü and G P Srivastava Diam. Relat. Mater. 18 1057 (2009)

    Article  ADS  Google Scholar 

  50. K Tsubouchi and N Mikoshiba IEEE. T. Son. Ultrason. Su-32 634 (1985)

  51. L E McNeil, M Grimsditch and R H French J. Am. Ceram. Soc. 76 1132 (1993)

    Article  Google Scholar 

  52. M Kazan, E Moussaed, R Nader and P Masri Phys. Status Solidi c 4 204 (2007)

    Article  Google Scholar 

  53. S Saib and N Bouarissa J. Phys. Chem. Solids 67 1888 (2006)

    Article  ADS  Google Scholar 

  54. R Kato and J Hama J. Phys. Condens. Matter 6 7617 (1994)

    Article  ADS  Google Scholar 

  55. A F Wright J. Appl. Phys. 82 2833 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ş. Katırcıoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, R., Katırcıoğlu, Ş. Structural properties of Alumnum nitride compound. Indian J Phys 88, 1021–1029 (2014). https://doi.org/10.1007/s12648-014-0517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0517-3

Keywords

PACS Nos.

Navigation