Skip to main content
Log in

Investigation of structural and electrical transport mechanism of SnO2 with Al dopants

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Undoped and Al-doped tin dioxide nanoparticles have been prepared by co-precipitation method in powdered and sintered pellet form. X-ray diffraction of samples have confirmed that all samples are of SnO2 nanoparticles, polycrystalline in nature with crystallite size 50 nm and lesser. Field emission scanning electron microscopy and energy dispersive spectroscopy have been used to confirm the size and composition of nanoparticles, respectively. Electrical measurements of samples have been carried out in frequency range of 100–100 kHz at intervals of 20 °C in temperature range 40–160 °C. Ac conductivity of sample shows dependency on both frequency and temperature. For undoped samples ac conductivity is governed by multiple hopping processes at room temperature and by correlated barrier hopping model at higher temperatures. However, Al doped SnO2 exhibits overlapping large polaron tunnelling model. From impedance analysis effect of grain boundary due to doping has been studied. It is also found that ac conductivity of samples increases with doping of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V Lantto and G Sberveglieri (Ed) Gas Sensors p 43 (Dordrecht: Kluwer) (1993)

  2. V Lantto and V Golovanov Sens. Act. B 24 614 (1995)

    Article  Google Scholar 

  3. H Kim et al J. Appl. Phys. 86 6451(1999)

    Article  ADS  Google Scholar 

  4. R W Siege J. Phys. Chem. Solids 559 1097 (1994)

    Article  ADS  Google Scholar 

  5. R Birringer Mater. Sci. Eng. A 33 117 (1989)

    Google Scholar 

  6. C Suryanarayana Bull. Mater. Sci. 17 30 (1994)

    Google Scholar 

  7. H Gleiter Progr. Mater. Sci. 33 223 (1989)

    Article  Google Scholar 

  8. J R Mac Donald Impedance Spectroscopy (New York: Wiley) (1987)

    Google Scholar 

  9. A Dutta and A Ghosh J. Non-Cryst. Solids 351 203 (2005)

  10. S Upadhyay, D Kumar and O Prakash Bull. Mater. Sci. 19 513 (1996)

    Article  Google Scholar 

  11. Y M Chiang, E B Lavik and D A Blom Nanostruct. Mater. 9 633 (1997)

    Article  Google Scholar 

  12. J Lee, J H Hwang, J J Mashek, T O Mason, A E Miller and R W Siegel J. Mater. Res. 10 2295 (1995)

    Article  ADS  Google Scholar 

  13. W Puin and P Heitjans Nanostruct. Mater. 6 885 (1995)

    Article  Google Scholar 

  14. A H Ammar, M S Abo Ghazala, A A M Farag and A Eleskandrany Indian J. Phys. 87 1169 (2013)

  15. M Pollak Philos. Mag. 23 519 (1971)

    Article  ADS  Google Scholar 

  16. A Ghosh Phys. Rev. B 42 5665 (1990)

    Article  ADS  Google Scholar 

  17. M Pollak and G E Pike Phys. Rev. Lett. 28 1449 (1972)

    Article  ADS  Google Scholar 

  18. H X Lecleac J. Phys. 40 27 (1979)

    Google Scholar 

  19. S R Elliott Philos. Mag. B 36 129 (1978)

    Google Scholar 

  20. S R Elliott Philos. Mag. 37 135 (1978)

    Article  Google Scholar 

  21. K Shimakawa Philos. Mag. 46 123 (1982)

    Article  ADS  Google Scholar 

  22. G E Pike Phys. Rev. B 6 1572 (1972)

    Article  ADS  Google Scholar 

  23. S R Elliott Phil. Mag. B 37 553 (1978)

    Article  ADS  Google Scholar 

  24. S Bhattacharya and A Ghosh Phys. Rev. B 68 224202 (2003)

    Article  ADS  Google Scholar 

  25. A Ghosh Phys. Rev. B 42 1388 (1990)

    Article  ADS  Google Scholar 

  26. A Ghosh and D Chakravorty Phys. Rev. B 48 5167 (1993)

    Article  ADS  Google Scholar 

  27. A Ghosh J. Phys: Condens. Mater. 1 7819 (1989)

    ADS  Google Scholar 

  28. A R Denton and N W Ashcroft Phys. Rev. A 43 6 (1991)

    Google Scholar 

  29. B D Cullity Elements of X-ray Diffraction (New York: Addison-Wesley) (1978)

    Google Scholar 

  30. M Abdullah Dar, K Mujasam Batoo, V Verma, W A Siddiqui and R K Kotnala J. Alloys Compd. 493 553 (2010)

  31. N Kumari, A Ghosh, S Tewari and A Bhattacharjee Indian J. Phys. 88 65 (2014)

  32. V Lantto and P Romppainen J. Electrochem. Soc. 35 2550 (1988)

    Article  Google Scholar 

  33. V Biju, S Neena, V Vrinda and S L Salini J. Mater. Sci. 43 1175 (2008)

    Article  ADS  Google Scholar 

  34. N R Yogamalar, R Srinivasan, A Vinu, K Ariga and A C Bose Sol. Stat. Comm. 149 1919 (2009)

    Article  ADS  Google Scholar 

  35. V D Mote, Y Purushotham and B N Dole J. Theor. Appl. Phys. 6 6 (2012)

    Article  ADS  Google Scholar 

  36. D Shannon and C T Prewitt Acta. Cryst. B 25 925 (1969)

    Article  Google Scholar 

  37. P C Yao, S T Hang, Y S Lin, W T Yen and Y C Lin Appl. Surf. Sci. 257 1441 (2010)

    Article  ADS  Google Scholar 

  38. E Purushotham and N G Krishna Indian J. Phys. 88 157 (2014)

    Article  Google Scholar 

  39. A Goswami and A P Goswami Thin Solid Films 16 175 (1973)

    Article  ADS  Google Scholar 

  40. A R Long Adv. Phys. 31 553 (1982)

    Article  ADS  Google Scholar 

  41. S K Dash, S Kant, B Dalai, M D Swain and B B Swain Indian J. Phys. 88 129 (2014)

    Article  Google Scholar 

  42. J Lee, J Whang, J J Mashek, T O Mason, A E Miller and R W Siegel J. Mater. Sci. 10 2295 (1995)

    Google Scholar 

  43. H S Nalwa Handbook of Nanostructured Materials and Nanotechnology (San Diego: Academic Press) (2000)

    Google Scholar 

  44. A Rockett The Materials Science of Semiconductors (USA: Springer) (2008)

    Book  Google Scholar 

  45. T G Langdon Rev. Adv. Mater. Sci. 25 11 (2010)

    Google Scholar 

  46. C W Nan, S Holten, R Birringer, H Gao, H Kliem and H Gleiter Phys. Stat. Sol. (A) 164 R1 (1997)

    Article  ADS  Google Scholar 

  47. V Srikant, V Sergo and D R Clarke J. Am. Ceram. Soc. 78 1935 (1995)

    Article  Google Scholar 

  48. G Blatter and F Greuter Phys. Rev. B 33 3952 (1986)

    Article  ADS  Google Scholar 

  49. A Corrias, G Ennas, G Paschina, G Piccaluga and D Zedda Mater. Sci. Forum. 25 195 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Ghosh, A. & Bhattacharjee, A. Investigation of structural and electrical transport mechanism of SnO2 with Al dopants. Indian J Phys 88, 1059–1066 (2014). https://doi.org/10.1007/s12648-014-0514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0514-6

Keywords

PACS Nos.

Navigation