Skip to main content
Log in

Time-delay induced symmetry restoration and noise enhanced stability phenomena under correlated noises in an asymmetric bistable system

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We consider the effects of time delay on the probability distribution function and the transition rate in an asymmetric bistable system with cross-correlated noises in this paper. The probability distribution function and the transition rate of the system are calculated analytically and numerically. We find that, by increasing the delay time τ, the symmetry of the asymmetric bistable system is restored and the state transition rate k of the system decreases with the activation rate, which corresponds to the phenomenon of noise enhanced stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C Mackey and L Glass Science 197 287 (1977)

    Article  ADS  Google Scholar 

  2. S Kim, S H Park and H-B Pyo Phys. Rev. Lett. 82 1620 (1999)

    Article  ADS  Google Scholar 

  3. J H Choi, J H Kim, R Heo and K J Lee Phys. Rev. Lett. 108 138103 (2012)

    Article  ADS  Google Scholar 

  4. P C Bressoff and S Coombes Phys. Rev. Lett. 78 4665 (1997)

    Article  ADS  Google Scholar 

  5. L R Nie and D C Mei Phys. Rev. E 77 031107 (2008)

    Article  ADS  Google Scholar 

  6. A N Pisarchik, R Meucci and F T Arecchi Phys. Rev. E 62 8823 (2000)

    Article  ADS  Google Scholar 

  7. L C Du and D C Mei Phys. Lett. A 374 3275 (2010)

    Article  ADS  MATH  Google Scholar 

  8. L S Tsimring and A Pikovsky Phys. Rev. Lett. 87 250602 (2001)

    Article  ADS  Google Scholar 

  9. T Piwonski, J Houlihan, T Busch and G Huyet Phys. Rev. Lett. 95 040601 (2005)

    Article  ADS  Google Scholar 

  10. L C Du and D C Mei Eur. Phys. J. B 85 75 (2012)

    Article  ADS  Google Scholar 

  11. D C Mei, L C Du and C J Wang J. Stat. Phys. 137 625 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. D C Mei, Z L Jia and C J Wang Phys. Scr. 84 045012 (2011)

    Article  ADS  Google Scholar 

  13. Z L Jia and D C Mei Eur. Phys. J. B 85 139 (2012)

    Article  ADS  Google Scholar 

  14. D C Mei, G Z Xie, L Cao and D J Wu Phys. Rev. E 59 3880 (1999)

    Google Scholar 

  15. D C Mei, C W Xie and L Zhang Phys. Rev. E 68 051102 (2003)

    Article  ADS  Google Scholar 

  16. D C Mei, C W Xie and Y L Xiang Phys. A 343 167 (2004)

    Article  MathSciNet  Google Scholar 

  17. X M Lv Indian J. Phys 87 903 (2013)

    Article  ADS  Google Scholar 

  18. C-Z Feng and W-L Duan Indian J. Phys 88 107 (2014)

  19. M E Inchiosa, A R Bulsara and L Gammaitoni Phys. Rev. E 55 4049 (1997)

    Article  ADS  Google Scholar 

  20. S Bouzat and H S Wio Phys. Rev. E 59 5142 (1999)

    Article  ADS  Google Scholar 

  21. L Gammaitoni and A R Balsara Phys. Rev. Lett. 88 230601 (2002)

    Article  ADS  Google Scholar 

  22. J H Li Phys. Rev. E 66 031104 (2002)

    Article  ADS  Google Scholar 

  23. A R Bulsara and M E Inchiosa Phys. Rev. Lett. 77 2162 (1996)

    Article  ADS  Google Scholar 

  24. D Wu and S Q Zhu Phys. Rev. E 73 051107 (2006)

    Article  ADS  Google Scholar 

  25. R Doering and C Gadoua Phys. Rev. Lett. 69 2318 (1992)

    Article  ADS  Google Scholar 

  26. P Hänggi Chem. Phys. 180157 (1994)

    Article  ADS  Google Scholar 

  27. P Pechukas and P Hänggi Phys. Rev. Lett. 73 2772 (1994)

    Article  ADS  Google Scholar 

  28. R N Mantegna and B Spagnolo Phys. Rev. Lett. 84 3025 (2000)

    Article  ADS  Google Scholar 

  29. R N Mantegna and B Spagnolo Nuovo Cimento D 17 873 (1995)

    Article  ADS  Google Scholar 

  30. A Fiasconaro and B Spagnolo Phys. Rev. E 83 041122 (2011)

    Article  ADS  Google Scholar 

  31. I Dayan, M Gitterman and G H Weiss Phys. Rev. A 46 757 (1992)

    Article  ADS  Google Scholar 

  32. R N Mantegna and B Spagnolo Phys. Rev. Lett. 76 563 (1996)

    Article  ADS  Google Scholar 

  33. B Spagnolo, A A Dubkov and N V Agudov Eur. Phys. J. B 40 273 (2004)

    Article  ADS  Google Scholar 

  34. B Spagnolo, A A Dubkov and N V Agudov Acta Phys. Pol. B 35 1419 (2004)

    ADS  Google Scholar 

  35. N V Agudov, A A Dubkov and B Spagnolo Phys. A 325 144 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. A Fiasconaro, B Spagnolo, A Ochab-Marcinek and E Gudowska-Nowak Phys. Rev. E 74 041904 (2006)

    Article  ADS  Google Scholar 

  37. A A Dubkov, N V Agudov and B Spagnolo Phys. Rev. E 69 061103 (2004)

    Article  ADS  Google Scholar 

  38. A Fiasconaro, B Spagnolo and S Boccaletti Phys. Rev. E 72 061110 (2005)

    Article  ADS  Google Scholar 

  39. B Spagnolo, A A Dubkov, A L Pankratov, E V Pankratova, A Fiasconaro and A Ochab-Marcinek Acta Phys. Pol. B 38 1925 (2007)

    ADS  Google Scholar 

  40. A Fiasconaro and B Spagnolo Phys. Rev. E 80 041110 (2009)

    Article  ADS  Google Scholar 

  41. A Fiasconaro, J J Mazo and B Spagnolo Phys. Rev. E 82 041120 (2010)

    Article  ADS  Google Scholar 

  42. A J R Madureira, P Hänggi and H S Wio Phys. Lett. A 217 248 (1996)

    Article  ADS  Google Scholar 

  43. A A Budini and M O Cáceres Phys. Rev. E 70 046104 (2004)

    Article  ADS  Google Scholar 

  44. T D Frank Phys. Rev. E 72 011112 (2005)

    Article  ADS  Google Scholar 

  45. J M Sancho, M S Miguel, S L Katz and J D Gunton Phys. Rev. A 26 1589 (1982)

    Article  ADS  Google Scholar 

  46. M I Dykman, D G Luchinsky, P V E McClintock and N D Stein Phys. Rev. A 46 1713 (1992)

    Article  ADS  Google Scholar 

  47. C W Gardiner Handbook of Stochastic Methods 2nd edn. (Berlin: Springer) (1983)

  48. B McNamara and K Wiesenfeld Phys. Rev. A 39 4854 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 11347014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, F. Time-delay induced symmetry restoration and noise enhanced stability phenomena under correlated noises in an asymmetric bistable system. Indian J Phys 88, 1111–1116 (2014). https://doi.org/10.1007/s12648-014-0508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0508-4

Keywords

PACS No.

Navigation