Skip to main content
Log in

Tunneling of Dirac fermions in a magnetic-induced gapped topological insulator-based \(F/I/F\) junction

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Klein tunneling and magnetoresistance in a ferromagnet/insulator/ferromagnet junction on the surface of a 3-dimensional topological insulator with a gate voltage applied to insulator segment are investigated in thin barrier limit. Due to creation of Dirac charged carriers in surface of a bulk topological insulator caused by spin–orbit interaction and time-reversal symmetry, its transport properties in junctions exhibit new behaviors. We suppose that vectors of magnetization in ferromagnetic regions are perpendicular to the surface of junction in two parallel and antiparallel configurations. We use Landauer–Buttiker formalism to obtain normal conductance resulted from Klein tunneling coefficient in the thin barrier limit. It is shown that transmission probability reaches one for parallel magnetization in \(Z=n\pi \), while for antiparallel magnetization in \(Z=n\pi /2\), so that tunneling conductance remains constant. We focus clearly on effect of magneto-induced gap on conductivity and specifically on magnetoresistance of junction, such that an approximately step functional behavior is found for magnetoresistance in terms of magnetization and it shows a significant negative value in maximum magnetic gap of structure for \(Z=n\pi /2\). Finally, the exact period of oscillations of conductance is obtained in parallel and antiparallel magnetizations. Also, we observe Klein transmission in determined values of barrier strength for magnetic-induced gap’s greater than zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O Klein Z. Phys. 53 157 (1929)

    Article  ADS  MATH  Google Scholar 

  2. N Dombey and A Calogeracos Phys. Rep. 315 41 (1999)

    Article  ADS  Google Scholar 

  3. M I Katsnelson, K S Novoselov and A K Geim Nat. Phys. 2 620 (2006)

    Article  Google Scholar 

  4. M I Katsnelson and K S Novoselov Solid State Commun. 3 143 (2007)

    Google Scholar 

  5. J Gao, W-Q Chen, X-Y Feng, X C Xie and F-Ch Zhang arXiv:0909.0378v1 (2009)

  6. C Bai, J Wang, G Yang and Y Yang Indian J. Phys. 87 133 (2013)

    Article  ADS  Google Scholar 

  7. H Goudarzi, N Aghamirli and S Anvarian Indian J. Phys. 87 1105 (2013)

    Article  ADS  Google Scholar 

  8. M R Setare and D Jahani Phys. B 405 1433 (2010)

    Article  ADS  Google Scholar 

  9. M R Setare and D Jahani J. Phys.: Condens. Matter 22 245503 (2010)

    Article  ADS  Google Scholar 

  10. S Y Zhou et al. Nat. Mater. 6 770 (2007)

    Article  ADS  Google Scholar 

  11. M Konig et al. Science 318 766 (2007)

    Article  ADS  Google Scholar 

  12. D Hsieh et al. Nature (London) 452 970 (2008)

    Article  ADS  Google Scholar 

  13. Y Xia et al. Nat. Phys. 5 398 (2009)

    Article  Google Scholar 

  14. Y L Chen et al. Science 325 178 (2009)

    Article  ADS  Google Scholar 

  15. J E Moore and L Balents Phys. Rev. B 75 121306(R) (2007)

    Article  ADS  Google Scholar 

  16. L Fu and C L Kane Phys. Rev. B 76 045302 (2007)

    Article  ADS  Google Scholar 

  17. S Mondal, D Sen, K Sengupta and R Shankar Phys. Rev. Lett. 104 046403 (2010)

    Article  ADS  Google Scholar 

  18. T Yokoyama, Y Tanaka and N Nagaosa Phys. Rev. B 81 121401(R) (2010)

    Article  ADS  Google Scholar 

  19. B Soodchomshom Phys. Lett. A 374 3561 (2010)

    Article  ADS  Google Scholar 

  20. A Suwanvarangkoon, I-Ming Tang, R Hoonsawat and B Soodchomshom Phys. E 43 1867 (2011)

    Article  ADS  Google Scholar 

  21. H Li and X Yang Solid State Commun. 152 1655 (2012)

    Article  ADS  Google Scholar 

  22. H Goudarzi, M Khezerlou and J Alilou J. Supercond. Nov. Magn. 26 3355 (2013)

    Article  Google Scholar 

  23. M Salehi, M Alidoust, Y Rahnavard and Gh Rashedi Phys. E 43 966 (2011)

    Article  ADS  Google Scholar 

  24. K-H Zhang, Zh-Ch Wang, Q-R Zheng and G Su Phys. Rev. B 86 174416 (2012)

    Article  ADS  Google Scholar 

  25. B Soodchomshom Phys. Lett. A 374 2894 (2010)

    Article  ADS  Google Scholar 

  26. Datta S Electronic transport in mesoscopic systems. (London: Cambridge University Press) (1995)

    Book  Google Scholar 

  27. T Yokoyama and J Linder Phys. Rev. B 83 081418(R) (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, H., Khezerlou, M. & Alav, A. Tunneling of Dirac fermions in a magnetic-induced gapped topological insulator-based \(F/I/F\) junction. Indian J Phys 89, 55–60 (2015). https://doi.org/10.1007/s12648-014-0502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0502-x

Keywords

PACS Nos.

Navigation