Skip to main content
Log in

Electronic spectrum of trilayer graphene

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Present work deals with the analysis of the single particle electronic spectral function in trilayer (ABC-, ABA- and AAA-stacked) graphene. Tight binding Hamiltonian containing intralayer nearest-neighbor and next-nearest neighbor hopping along-with the interlayer coupling parameter within two triangular sub-lattice approach for trilayer graphene has been employed. The expression of single particle spectral functions A(kw) is obtained within mean-field Green’s function equations of motion approach. Spectral function at Γ, M and K points of the Brillouin zone has been numerically computed. It is pointed out that the nature of electronic states at different points of Brillouin zone is found to be influenced by stacking order and Coulomb interactions. At Γ and M points, a trilayer splitting is predicted while at K point a bilayer splitting effect is observed due to crossing of two bands (at K point). Interlayer coupling (\( t_{ \bot } \)) is found to be responsible for the splitting of quasi-particle peaks at each point of Brillouin zone. The influence of \( t_{ \bot } \) in trilayer graphene is prominent for AAA-stacking compared to ABC- and ABA-stacking. On the other hand, onsite Coulomb interaction reduces the trilayer splitting effect into bilayer splitting at Γ and M points of Brillouin zone and bilayer splitting into single peak spectral function at K point with a shifting of the peak away from Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K S Novoselov et al. Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. S D Sarma, S Adam, E H Hwang and E Rossi Rev. Mod. Phys. 83 407 (2010)

    Article  Google Scholar 

  3. K S Novoselov et al. Nature 438 197 (2005)

    Article  ADS  Google Scholar 

  4. P R Wallace Phys. Rev. 71 622 (1947)

    Article  MATH  ADS  Google Scholar 

  5. H Goudarzi, N Aghamirli and S Anvarian Indian J. Phys. 87 1105 (2013)

    Article  ADS  Google Scholar 

  6. A K Geim and K S Novoselov Nature Mater. 6 183 (2007)

    Article  ADS  Google Scholar 

  7. J C Charlier, X Gonze and J P Michenaud Phys. Rev. B 43 4579 (1991)

    Article  ADS  Google Scholar 

  8. J C Charlier, J P Michenaud and X Gonze Phys. Rev. B 46 4531(1992)

    Article  ADS  Google Scholar 

  9. J Berashevich and T Chakraborty J. Phys. Chem. C 115 24666 (2011)

    Article  Google Scholar 

  10. B Partoens and F M Peeters Phys. Rev. B 74 075404 (2006)

    Article  ADS  Google Scholar 

  11. S Latil and L Henrard Phys. Rev. Lett 97 036803 (2006)

    Article  ADS  Google Scholar 

  12. Y Zhang et al. Nature 459 820 (2009)

    Article  ADS  Google Scholar 

  13. E V Castro et al. Phys. Rev. Lett 99 216802 (2007)

    Article  ADS  Google Scholar 

  14. I Lobato and B Partoens Phys. Rev. B 83 165429 (2011)

    Article  ADS  Google Scholar 

  15. L Samuelson and I P Batra J. Phys. C: Solid State Phys. 13 5105 (1980)

    Article  ADS  Google Scholar 

  16. T Ohta, A Bostwick, J L McChesney, T Seyller, K Horn and E Rotenberg Phys. Rev. Lett. 98 206802 (2007)

    Article  ADS  Google Scholar 

  17. J K Lee et al. J. Chem. Phys. 129 234709 (2008)

    Article  ADS  Google Scholar 

  18. W Bao et al. Nature Phys. 7 948 (2011)

    Article  ADS  Google Scholar 

  19. M F Craciun, S Russo, M Yamamoto, J B Oostinga, A F Morpurgo and S Tarucha Nature Nanotechnology 4 383 (2009)

    Article  ADS  Google Scholar 

  20. K F Mak, J Shan and T F Heinz Phys. Rev. Lett. 104 176404 (2010)

    Article  ADS  Google Scholar 

  21. S H Jhang et al. Phys. Rev. B 84 161408(R) (2011)

    Article  ADS  Google Scholar 

  22. C H Lui, Z Li, K F Mak, E Cappelluti and T F Heinz Nature Phys. 7 944 (2011)

    Article  ADS  Google Scholar 

  23. C L Lu, C P Chang, Y C Yuang, R B Chen and M L Lin Phys. Rev. B 73 144427 (2006)

    Article  ADS  Google Scholar 

  24. M Koshino Phys. Rev. B 81 125304 (2010)

    Article  ADS  Google Scholar 

  25. S B Kumar and J Guo App. Phys. Lett. 98 222101 (2011)

    Article  ADS  Google Scholar 

  26. C L Lu, C P Chang, Y C Huang, J H Ho, C C Hwang and M F Lin J. Phys. Soc. Japan 76 024701 (2007)

    Article  ADS  Google Scholar 

  27. F Zhang, B Sahu, H Min and A H MacDonald Phys. Rev. B 82 035409 (2010)

    Article  ADS  Google Scholar 

  28. M Koshino and E MacCann Phys. Rev. B 79 125443 (2009)

    Article  ADS  Google Scholar 

  29. M Aoki and H Amawashi Solid State Comm. 142 123 (2007)

    Article  ADS  Google Scholar 

  30. A A Avetisyan, B Partoens and F M Peeters Phys. Rev. B 81 115432 (2010)

    Article  ADS  Google Scholar 

  31. K Tang et al. J. Phys. Chem. C 115 9458 (2011)

    Article  Google Scholar 

  32. F Guinea, A H Castro Neto and N M R Peres Phys. Rev. B 73 245426 (2006)

    Article  ADS  Google Scholar 

  33. H K Min and A H MacDonald Prog. Theor. Phys. Suppl. 176 227 (2008)

    Article  MATH  ADS  Google Scholar 

  34. B R Wu Appl. Phys. Lett. 98 263107 (2011)

    Article  ADS  Google Scholar 

  35. B Van Duppen and F M Peeters Europhys. Lett. 102 27001 (2013)

    Article  ADS  Google Scholar 

  36. B Partoens and F M Peeters Phys. Rev. B 75 193402 (2007)

    Article  ADS  Google Scholar 

  37. S H R Sena, J M Pereira Jr, G A Farias and F M Peeters Phys. Rev. B 86 085412 (2012)

    Article  ADS  Google Scholar 

  38. G D Mahan Many-Particle Physics (New York: Plenum) (1990)

    Book  Google Scholar 

  39. Z Yang, C Hu and Q Meng Indian J. Phys. 86 977 (2012)

    Article  ADS  Google Scholar 

  40. C Coletti et al. Phys. Rev. B 88 155439 (2013)

    Article  ADS  Google Scholar 

  41. A R Wright, F Liu and C Zhang Nanotechnology 20 405203 (2009)

    Article  ADS  Google Scholar 

  42. S Kumar and Ajay Eur. Phys. J. B 86 111 (2013)

    Article  ADS  Google Scholar 

  43. S Kumar and Ajay J. Comput. Theor. Nanosci. 10 2161 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, S Kumar has been financially supported by the Ministry of Human Resources Development (MHRD), Government of India in form of Ph. D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Ajay Electronic spectrum of trilayer graphene. Indian J Phys 88, 813–829 (2014). https://doi.org/10.1007/s12648-014-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0500-z

Keywords

PACS Nos.

Navigation