Indian Journal of Physics

, Volume 88, Issue 8, pp 831–835 | Cite as

Influence of source concentration on structural and optical properties of SnO2 nanoparticles prepared by chemical precipitation method

  • M. SaravanakumarEmail author
  • S. Agilan
  • N. Muthukumarasamy
  • A. Marusamy
  • K. Prabaharan
  • A. Ranjitha
  • P. Uma Maheshwari
Original Paper


In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9–7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6–7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4–4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.


Semiconductor nanoparticles SnO2 nanoparticles HRTEM Optical properties 


78.67.Bf 61.46.Df 68.37.Og 


  1. [1]
    S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010)Google Scholar
  2. [2]
    G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)CrossRefADSGoogle Scholar
  3. [3]
    A U Ubale and A N Bargal Indian J. Phys. 84 1497 (2010)CrossRefADSGoogle Scholar
  4. [4]
    M R Vaezi, S Khoby Shendy and T Ebadzadeh Indian J. Phys. 86 9 (2012)Google Scholar
  5. [5]
    A R Wang and H Xiao Mater. Lett. 631 221 (2009)Google Scholar
  6. [6]
    M Aziz, S S Abbas and W R W Baharom Mater. Lett. 74 62 (2012)CrossRefGoogle Scholar
  7. [7]
    S Devi and M Srivastva Indian J. Phys. 84 1561 (2010)CrossRefADSGoogle Scholar
  8. [8]
    Th Diana, K Nomita Devi and H Nandakumar Sarma Indian J. Phys. 84 687 (2010)Google Scholar
  9. [9]
    J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)CrossRefADSGoogle Scholar
  10. [10]
    P Saikia, A Borthakur and P K Saikia Indian J. Phys. 85 551 (2011)Google Scholar
  11. [11]
    X X Zhu, K Banana, H Y Liu, M Krause and M Yang Macromolecules 32 277 (1999)CrossRefADSGoogle Scholar
  12. [12]
    L C Nehru, V Swaminathan and C Sanjeeviraja Am. J. Mater. Sci. 2 6 (2012)CrossRefGoogle Scholar
  13. [13]
    A Ghosh, N Kumari, S Tewari and A Bhattacharjee Indian J. Phys. 87 1099 (2013)Google Scholar
  14. [14]
    F Gu et al. Chem. Phys. Lett. 372 451 (2003)Google Scholar
  15. [15]
    D Calestani, L Lazzarini, G Salviati and M Zha Cryst. Res. Technol. 40 937 (2005)CrossRefGoogle Scholar
  16. [16]
    S SujathaLekshmy, L V Maneeshya, P V Thomas and K Joy Indian J. Phys. 87 33 (2013)Google Scholar
  17. [17]
    J Q Hu et al J. Phys. Chem. B106 3823 (2002)Google Scholar
  18. [18]
    H W Kim, N H Kim, J H Myung and S H Shim Phys. Status Solidi A202 1758 (2005)CrossRefADSGoogle Scholar
  19. [19]
    S Brovelli, N Chiodini, F Meinardi, A Lauria and A Paleari Appl. Phys. Lett. 89 153126 (2006)CrossRefADSGoogle Scholar
  20. [20]
    S Chaliha, M N Borah, P C Sarmah and A Rahman Indian J. Phys 82 303 (2008)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2014

Authors and Affiliations

  • M. Saravanakumar
    • 1
    Email author
  • S. Agilan
    • 2
  • N. Muthukumarasamy
    • 2
  • A. Marusamy
    • 2
  • K. Prabaharan
    • 1
  • A. Ranjitha
    • 2
  • P. Uma Maheshwari
    • 3
  1. 1.Department of PhysicsSVS College of EngineeringCoimbatoreIndia
  2. 2.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations