Skip to main content
Log in

Structural, optical and magnetic properties of Cr3+ doped ZnO nanopowder

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cr3+ doped ZnO nanopowder has been synthesized by solid state reaction with the assistance of sonication. Structural, optical and magnetic properties have been studied by various techniques. X-ray diffraction measurements demonstrate that Cr-doped ZnO nanopowder has a wurtzite structure. Scanning electron microscope images show irregular shaped stone like structures. Optical absorption spectrum exhibits the characteristic bands of Cr3+ ions. Electron paramagnetic resonance spectrum exhibits a strong resonance signal at g = 1.986 due to exchange coupled Cr3+ ion pairs. From correlation spectrum and optical absorption data, the nature of bonding of Cr3+ ion with its ligands has been discussed. The room temperature Photoluminescence spectrum exhibites emission bands at 405, 436, 487 and 543 nm under an excitation of 365 nm. Commission International de I’Eclairage colour coordinates have been determined from the emission spectrum. Magnetometric measurements show that Cr-doped ZnO nanopowder exhibits ferromagnetism at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Singh et al. J. Phys. D: Appl. Phys. 40 6312 (2007)

    Article  ADS  Google Scholar 

  2. Y B Li, Y Bando and D Golberg Appl. Phys. Lett. 84 3603 (2004)

    Article  ADS  Google Scholar 

  3. U Ozgur et al. J. Appl. Phys. 98 043101 (2005)

    Article  Google Scholar 

  4. C K Xu, J Chun, D E Kim, J J Kim, B Chon and T Joo Appl. Phys. Lett. 90 083113 (2007)

    Article  ADS  Google Scholar 

  5. T Dietl, H Ohno, F Matsukura, J Cibert and D Ferrand Science 287 1019 (2000)

    Article  ADS  Google Scholar 

  6. K Sato and H K Yoshida Jpn. J. Appl. Phys. 39 L555 (2000)

    Article  ADS  Google Scholar 

  7. J J Liu, K Wang, M H Yu and W L Zhou J. Appl. Phys. 102 024301 (2007)

    Article  ADS  Google Scholar 

  8. R Janisch, P Gopal and N A Spaldin J. Phys.: Condens. Matter. 17 R657 (2005)

    ADS  Google Scholar 

  9. S Mondal and P Mitra Indian J. Phys. 87 125 (2013)

    Article  ADS  Google Scholar 

  10. M L Dinesha, G D Prasanna, C S Naveen and H S Jayanna Indian J. Phys. 87 147 (2013)

    Article  ADS  Google Scholar 

  11. T Thilagavathi and D Geetha Indian J. Phys. 87 747 (2013)

    Article  ADS  Google Scholar 

  12. H Wang et al. Nanotechnology 17 4312 (2006)

    Article  ADS  Google Scholar 

  13. Priya Gopal and Nicola A Spaldin Phys. Rev. B 74 094418 (2006)

    Article  ADS  Google Scholar 

  14. K Ueda, H Tabata and T Kawai Appl. Phys. Lett. 79 988 (2001)

    Article  ADS  Google Scholar 

  15. Z Jin et al. Appl. Phys. Lett. 78 3824 (2001)

    Article  ADS  Google Scholar 

  16. B K Roberts, A B Pakhomov, V S Shutthanandan and K M Krishnan J. Appl. Phys. 97 10D310 (2005)

    Article  Google Scholar 

  17. Y Liu et al. J. Solid State Chem. 184 1273 (2011)

    Article  ADS  Google Scholar 

  18. S Liufu, H Xiao and Y Li Powder Technol. B 145 20 (2004)

    Article  Google Scholar 

  19. X Wu, H Chen, L Gong, F Qu and Y Zheng Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 035006 (2011)

    Google Scholar 

  20. Z Sun, L Liu, L Zhang and D Z Jia Nanotechnology 17 2266 (2006)

    Article  ADS  Google Scholar 

  21. V Prasad, C D’Souza, Deepti Yadav, A J Shaikh and N Vigneshwaran Spectrochim. Acta. A 65 173 (2006)

    Article  ADS  Google Scholar 

  22. M Zhou, J Yu and B Cheng J. Hazard. Mater. B 137 1838 (2006)

    Article  Google Scholar 

  23. S Anandan and M Ashokkumar Ultrason. Sonochem. 16 316 (2009)

    Article  Google Scholar 

  24. B Babu, C R Krishna, C V Reddy, V P Manjari and R V S S N Ravikumar Spectrochim. Acta. A 109 90 (2013)

    Article  ADS  Google Scholar 

  25. B Babu, T Aswani, G T Rao, R J Stella, B Jayaraja and R V S S N Ravikumar J. Magn. Magn. Mater. 355 76 (2014)

    Article  ADS  Google Scholar 

  26. Y Li et al. Solid State Commun. 150 751 (2010)

    Article  ADS  Google Scholar 

  27. J Elanchezhiyan et al. J. Alloys. Compd. 468 7 (2009)

    Article  Google Scholar 

  28. S Yılmaz, M Parlak, S Ozcan, M Altunbas¸ E McGlynn and E Bacaksız Appl. Surf. Sci. 257 9293 (2011)

    Article  ADS  Google Scholar 

  29. C Laxmi Kanth, B V Raghavaiah and N Veeraiah J. Quant Spectro. Rad. Trans. 90 97 (2005)

    Article  ADS  Google Scholar 

  30. X Long, Z Lin, Z Hu, G Wang and T P J Han J. Alloys Compd. 347 52 (2002)

    Article  Google Scholar 

  31. W Ryba-Romanowski, S Golab, W A Pisarski, D Podsiadla and Z Czapla Chem. Phys. Lett. 264 323 (1997)

    Article  ADS  Google Scholar 

  32. F Rasheed, K P O’Donnell, B Henderson and D B Hollis J. Phys.: Condens. Matter. 3 1915 (1991)

    ADS  Google Scholar 

  33. D J Qiu, H Z Wu, A M Feng, Y F Yao, N B Chen and T N Xu Appl. Sur. Sci. 222 263 (2004)

    Article  ADS  Google Scholar 

  34. S Zhang, Y Zhu, S Zhu and Y Chen Thin Solid Films 515 2361 (2006)

    Article  ADS  Google Scholar 

  35. Y Dai, Y Zhang, Y Q Bai and Z L Wang Chem. Phys. Lett. 375 96 (2003)

    Article  ADS  Google Scholar 

  36. Z Fang, Y Wang, D Xu, Y Tan and X Liu Opt. Mater. 26 239 (2004)

    Article  ADS  Google Scholar 

  37. Y Feng, Y Zhou, Y Liu, G Zhang and X Zhang J. Lumin. 239 119 (2004)

    Google Scholar 

  38. J M Dance, J J Videau and J Portier J. Non-Cryst. Solids 86 88 (1986)

    Article  ADS  Google Scholar 

  39. H Rager, H Schneider and H Graetsch Am. Min. 75 392 (1990)

    Google Scholar 

  40. B R McGarvey J. Chem. Phys. 41 3743 (1964)

    Article  ADS  Google Scholar 

  41. P V Radovanovic and D R Gamelin Phys. Rev. Lett. 91 157202 (2003)

    Article  ADS  Google Scholar 

  42. Y Liu et al J. Alloys Compd. 486 835 (2009)

    Article  ADS  Google Scholar 

  43. B Wang et al. Mater. Chem. Phys. 113 103 (2009)

    Article  Google Scholar 

  44. Y Liu et al. J. Alloys Compd. 486 835 (2009)

    Article  ADS  Google Scholar 

  45. G Z Xing et al. Phys. Rev. B 79 174406 (2009)

    Article  ADS  Google Scholar 

  46. G Z Xing et al. Adv. Mater. 20 3521 (2008)

    Article  Google Scholar 

  47. D W Chu, Y P Zeng and D L Jiang Solid State Commun. 143 308 (2007)

    Article  ADS  Google Scholar 

  48. K Sato and H Katayama-Yoshida Physica B 308-310 904 (2001)

    Article  Google Scholar 

  49. H Liu et al. Appl. Phys. Lett. 91 072511(2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to UGC–DRS and DST–FIST, New Delhi for financial assistance. Authors are thankful to the Dr. P. Sudhakar, Coordinator, Department of Bio-Technology for providing Sonication facility and Director, Centralized Laboratory, Acharya Nagarjuna University for providing Ultracentrifuge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. S. S. N. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, B., Manjari, V.P., Aswani, T. et al. Structural, optical and magnetic properties of Cr3+ doped ZnO nanopowder. Indian J Phys 88, 683–690 (2014). https://doi.org/10.1007/s12648-014-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0473-y

Keywords

PACS Nos.

Navigation