Indian Journal of Physics

, Volume 87, Issue 9, pp 873–877 | Cite as

Effect of hydrocarbon gas on synthesis and diameter of carbon nanotubes

  • F. TaleshiEmail author
  • A. A. Hosseini
  • M. Mohammadi
  • M. Pashaee
Original paper


In this study, effect of ethylene and acetylene on synthesis and diameter of carbon nanotubes has been examined. The synthesis of carbon nanotubes has been carried out by chemical vapor deposition method on iron catalyst nanoparticles, at 925 °C under atmospheric pressure. Iron oxide nanoparticles have been prepared in alcohol solution containing MgO powder as a support, with a combination of 10–40 wt% by impregnation method. During synthesis of carbon nanotubes, temperature, carrier gas flow and hydrocarbon gases have been kept constant. The produced materials have been characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.


Carbon nanotubes Catalyst nanoparticles CVD method Impregnation method 


61.46.-w 61.46.Fg 61.48.De 


  1. [1]
    J W Ward, B Q Wei and P M Ajayan Chem. Phys. Lett. 376 717 (2003)ADSCrossRefGoogle Scholar
  2. [2]
    H Y Jung, S M Jung, L Kim and J S Suh Carbon 46 969 (2008)CrossRefGoogle Scholar
  3. [3]
    F Gholami-Orimi et al., J. Anal. Methods Chem. doi: 10.1155/2012/902184 (2012)
  4. [4]
    R K Pandyan, S Seenithurai and M Mahendran Indian J. Phys. 86 677 (2012)ADSCrossRefGoogle Scholar
  5. [5]
    D S Bethune et al., Nature 363 605 (1993)ADSCrossRefGoogle Scholar
  6. [6]
    W K Maser et al., Chem. Phys. Lett. 292 587 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    A A Hosseini and F Taleshi Indian J. Phys. 84 789 (2010)Google Scholar
  8. [8]
    F Taleshi and A A Hosseini Indian J. Phys. 87 425 (2013)Google Scholar
  9. [9]
    S F Lee, Y P Chang and L Y Lee New Carbon Mat. 26 401 (2011)CrossRefzbMATHGoogle Scholar
  10. [10]
    Q Zhang, M Zhao, J Huang, W Qian and F Wei Chin. J. Catalysis 29 1138 (2008)CrossRefGoogle Scholar
  11. [11]
    K Hata et al., Science 306 1362 (2004)ADSCrossRefGoogle Scholar
  12. [12]
    K Y Tran, B Heinrichs, J F Colomer, J P Pirard and S Lambert Appl. Catalysis A: General 318 63 (2007)CrossRefGoogle Scholar
  13. [13]
    E Terrado et al., Mater. Sci. Eng. C 26 1185 (2006)CrossRefGoogle Scholar
  14. [14]
    N Das, A Dalai, J S Soltan Mohammadzadeh and J Adjaye Carbon 44 2236 (2006)CrossRefGoogle Scholar
  15. [15]
    Q Li, H Yan, J Zhang and Z Liu Carbon 42 829 (2004)CrossRefGoogle Scholar
  16. [16]
    L A Montoro, P Corio and J M Rosolen Carbon 45 1234 (2007)CrossRefGoogle Scholar
  17. [17]
    Q Li, H Yan, Y Cheng, J Zhang and Z F Liu J. Chem. 12 1179 (2002)Google Scholar
  18. [18]
    D Kumar et al., Tetrahedron 63 3093 (2007)CrossRefGoogle Scholar
  19. [19]
    Y Li, W Kim, Y Zhang, M Rolandi, D Wang and H Dai J. Phys. Chem. B 105 11424 (2001)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2013

Authors and Affiliations

  • F. Taleshi
    • 1
    Email author
  • A. A. Hosseini
    • 2
  • M. Mohammadi
    • 2
  • M. Pashaee
    • 2
  1. 1.Department of Applied Science, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  2. 2.Department of Physics, Faculty of SciencesMazandaran UniversityBabolsarIran

Personalised recommendations