Skip to main content
Log in

Optimal designing of polychromatic field for maximum dissociation of LiH molecule

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present a strategy for enhancing the dissociation probability of a diatomic molecule, namely LiH, by designing optimal laser pulse. Dissociation dynamics is followed by solving time-dependent Schrödinger equation using time-dependent Fourier Grid Hamiltonian technique with optimal laser pulse function, generated by using the stochastic optimization technique of simulated annealing. We show that as we increase number of variable parameters while designing the optimal time dependent perturbation, higher dissociation is obtained. The step-wise increase in dissociation probability with the increase in complexity of designed pulse is clearly shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S Shi and H Rabitz Comp. Phys. Com. 63 71 (1991)

    Article  ADS  MATH  Google Scholar 

  2. T Goswami, D K Das, S K Karthick Kumar and D Goswami Indian J. Phys. 86 181 (2012)

    Article  ADS  Google Scholar 

  3. S Shi and H. Rabitz J. Chem. Phys. 92 364 (1990)

    Article  ADS  Google Scholar 

  4. S Ghosh, B K Paul, A Chakraborty, D N Nath and N Guchhait Indian J. Phys. 86 219 (2012)

    Article  ADS  Google Scholar 

  5. D J Tannor and S A Rice J. Chem. Phys. 83 5013 (1985)

    Article  ADS  Google Scholar 

  6. D J Tannor, R Kosloff, S A Rice J. Chem. Phys. 85 5805 (1986)

    Article  ADS  Google Scholar 

  7. B Amstrup, R J Carlson, A Matro and S A Rice J. Phys. Chem. 95 8091 (1991)

    Article  Google Scholar 

  8. S Shi, A Woody and H Rabitz Chem. Phys. 88 6870 (1988)

    ADS  Google Scholar 

  9. Z Y Liu, H C Du, S H Sun, L Li, L L Ma and B T Hu Indian J. Phys. 86 647 (2012)

    Article  ADS  Google Scholar 

  10. M A Mahmoud and Y E E Gamal Indian J. Phys. 86 659 (2012)

    Article  ADS  Google Scholar 

  11. S Mitra, M M Hossain, B Ray and Pradip N Ghosh Indian J. Phys. 84 969 (2010)

    Article  ADS  Google Scholar 

  12. S Ghosh, K Maji, R Sharma and S P Bhattcharyya J. Chem. Science 121 757 (2009)

    Article  Google Scholar 

  13. S Guha, N Mukherjee and P Chaudhury Indian J. Phys. 86 245 (2012)

    Article  ADS  Google Scholar 

  14. M Ghosh, R Sharma and S P Bhattacharyya Chem. Phys. Lett. 449 165 (2007)

    Article  ADS  Google Scholar 

  15. B Dahiya, D Munjal and V Prasad Indian J. Phys. 85 1721 (2011)

    Article  ADS  Google Scholar 

  16. S Sharma, H Singh and G G Balint-kurti J. Chem. Sc. 24 99 (2012)

    Article  Google Scholar 

  17. S Sharma and H Singh Chem. Phys. 390 68 (2011)

    Article  ADS  Google Scholar 

  18. S Sharma, H Singh, J Harvey and G G Balint-kurti J. Chem. Phys. 133 174103 (2010)

    Article  ADS  Google Scholar 

  19. S Sharma, H Singh and G G Balint-kurti J. Chem. Phys. 132 064108 (2010)

    Article  ADS  Google Scholar 

  20. P Kumar, S Sharma and H Singh J. Theo. Comp. Chem. 8 157 (2009)

    Article  Google Scholar 

  21. H Rabitz and W S Zhu Acc. Chem. Res. 33 572 (2000)

    Article  Google Scholar 

  22. J Botina, H Rabitz and N Rehman J. Chem. Phys. 102 226 (1995)

    Article  ADS  Google Scholar 

  23. W Jakubetz, E Kades and J. Manz J. Phys. Chem. 97 12609 (1993)

    Article  Google Scholar 

  24. J Manz and G K Paramanov J. Phys. Chem. 97 12625 (1993)

    Article  Google Scholar 

  25. A Mitra and H Rabitz J. Chem. Phys. 120 044112 (2008)

    Article  ADS  Google Scholar 

  26. S Shi and H Rabitz Chem. Phys. 139 185 (1989)

    Article  ADS  Google Scholar 

  27. J G B Beumee and H Rabitz J. Math. Phys. 31 1235 (1990)

    Article  MathSciNet  Google Scholar 

  28. H Singh, S Sharma, P Kumar, N H Jeremy and G G Balint-kurty Lect. Notes Comp. Sci. 5102 387 (2008)

    Article  Google Scholar 

  29. A Kaiser and V May Chem. Phys. 320 95 (2006)

    Article  ADS  Google Scholar 

  30. O Atabek, C M Dion and A B H Yedderi J. Phys. B 36 4667 (2003)

    Article  ADS  Google Scholar 

  31. H. Rabitz Science 314 264 (2006)

    Article  Google Scholar 

  32. R S Judson and H Rabitz Phys. Rev. Lett. 68 1500 (1992)

    Article  ADS  Google Scholar 

  33. C G Elles and F F Crim Ann. Rev. Phys. Chem. 57 273 (2006)

    Article  ADS  Google Scholar 

  34. M Shapio and P Brumer Principles of the Quantum Control of Molecular Processes (New York, USA : Wiely) (2003)

    Google Scholar 

  35. N E Henriksen Chem. Soc. Rev 31 37 (2002)

    Article  Google Scholar 

  36. S A Rice Nature(London) 409 422 (2001)

    Article  ADS  Google Scholar 

  37. M V Korolkov, J Manz, G K Paramonov and B Schmidt Chem. Phys. Lett. 260 604 (1996)

    Article  ADS  Google Scholar 

  38. S Adhikari and S P Bhattacharyya, Phys. Lett. A 172 155 (1992)

    Article  ADS  Google Scholar 

  39. S Adhikari, P Dutta and S P Bhattacharyya Chem. Phys. Lett. 199 574 (1992)

    Article  ADS  Google Scholar 

  40. C C Marston and G G Balint-kurti J. Chem. Phys. 91 3571 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  41. S Kirkpatrick, C D Gelatt and M P Vecchi Science 220 671 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. S Kirkpatrick J. Stat. Phys. 34 975 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  43. P Chaudhury and S P Bhattacharyya Inter. J. Quant. Chem. 74 153 (1999)

    Article  Google Scholar 

  44. P Chaudhury and S P Bhattacharyya Chem. Phys. Lett 262 764 (1996)

    Article  ADS  Google Scholar 

  45. P Dutta and S P Bhattacharyya Chem. Phys. Lett. 167 309 (1990)

    Article  ADS  Google Scholar 

  46. S Nandi, P Chaudhury, R Sharma and S P Bhattacharyya J. Theo. Comp. Chem. 7 977 (2008)

    Article  Google Scholar 

  47. P Chaudhury, R Saha and S P Bhattacharyya Phys. Lett. A 291 397 (2001)

    Article  ADS  MATH  Google Scholar 

  48. S K Biring and P Chaudhury Chem. Phys. 400 198 (2012)

    Article  ADS  Google Scholar 

  49. S Nandi, P Chaudhury and S P Bhattacharyya Adv. Comput. Intell. 61 259 (2009)

    Article  Google Scholar 

  50. P Chaudhury, R Metzler and S K Banik J. Phys. A 42 335101 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

S. S. thanks UGC, New Delhi for granting a D. S. Kothari post-doctoral fellowship. S. T. acknowledges the financial support form UGC, New Delhi, for granting a senior Research Fellowship. P. C. thanks UGC for the award of a major research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chaudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Talukder, S. & Chaudhury, P. Optimal designing of polychromatic field for maximum dissociation of LiH molecule. Indian J Phys 87, 865–872 (2013). https://doi.org/10.1007/s12648-013-0307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0307-3

Keywords

PACS Nos.

Navigation