Skip to main content

Advertisement

Log in

Structural dynamics and diffusion mechanism in glass-forming liquid under high pressure

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural dynamics and diffusion mechanism in liquid GeO2 (a typical glass-forming liquid) have been studied by molecular dynamics simulation. Models consisting of 1998 atoms have been constructed under a wide pressure range (from 0 to 48 GPa) and at 3,200 K. The structural dynamics has been analyzed through the nearest-neighbor atomic exchange among coordination units, spatially heterogeneous dynamics (SHD), clustering and structural stability (lifetime of basic structural units). Investigation of structural dynamics has allowed us to gain insight into various important atomic (molecular) properties and to clarify the diffusion mechanism and origin of SHD phenomena in glass-forming liquids under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Micoulaut Chem. Geol. 213 197 (2004)

  2. M Micoulaut, L Cormier and G S Henderson J. Phys.: Condens. Matter 18 R753 (2006)

  3. P F McMillan J. Mater. Chem. 14 1506 (2004)

    Google Scholar 

  4. A Takada, P Richet, C R A Catlow and G D Price J. Non-Cryst. Solids 353 1892 (2007)

    Article  ADS  Google Scholar 

  5. C E Stone et al. J. Non-Cryst. Solids 293295 769 (2001)

    Article  Google Scholar 

  6. O Ohtaka et al. Phys. Rev. Lett. 92 155506 (2004)

    Article  ADS  Google Scholar 

  7. V V Brazhkin and A G Lyapin J. Phys.: Condens. Matter 15 6059 (2003)

    Google Scholar 

  8. M Brian Erwin and Ralph H. Colby J. Non-Cryst. Solids 307310 225 (2002)

    Google Scholar 

  9. S C Glotzer J. Non-Cryst. Solids 274 342 (2000)

    Google Scholar 

  10. K L Ngai J. Non-Cryst. Solids 275 7 (2000)

  11. J Habasaki J. Non-Cryst. Solids 353 3956 (2007)

    Google Scholar 

  12. J P Itie, A Polian, G Calas, J Petiau, A Fontaine and H Tolentino Phys. Rev. Lett. 63 398 (1989)

    Article  ADS  Google Scholar 

  13. K H Smith, E Shero, A Chizmeshya and G H Wolf J. Chem. Phys. 102 6851 (1995)

    Article  ADS  Google Scholar 

  14. C H Polsky, K H Smith and G H Wolf J. Non-Cryst. Solids 248 159 (1999)

    Article  ADS  Google Scholar 

  15. M Guthrie et al. Phys. Rev. Lett. 93 115502 (2004)

    Article  ADS  Google Scholar 

  16. D J Durben and G H Wolf Phys. Rev. B 43 2355 (1991)

  17. K Trachenko, M T Dove, V Brazhkin and F S El’kin Phys. Rev. Lett. 93 135502 (2004)

    Article  ADS  Google Scholar 

  18. E Principi, A Di Cicco, F Decremps, A Polian and S De Panfilis Phys. Rev. B 69 201201 (2004)

    Article  ADS  Google Scholar 

  19. P Nico de Koker, Lars Stixrude, B B Karki Geochim. Cosmochim. Acta 72 1427 (2009)

  20. Michael Vogel and C S Glotzer Phys. Rev. E 70 061504 (2004)

  21. V Teboul Eur. Phys. J. B 51 111 (2006)

  22. E R Weeks et al. Science 287 627 (2000)

    Article  ADS  Google Scholar 

  23. S C Glotzer J. Non-Crystalline Solids 274 342 (2000)

    Google Scholar 

  24. C A Angell Science 267 1924 (1995)

  25. C Dasgupta Pramana J. Phys. 64 679 (2005)

  26. L Berthier and G Biroli Rev. Mod. Phys. 83 587 (2011)

    Google Scholar 

  27. G Adam and J H Gibbs J. Chem. Phys. 43 139 (1965)

  28. J H Gibbs and E A Dimarzio J. Chem. Phys. 28 373 (1958)

    Google Scholar 

  29. D Turnbull, M H Cohen J. Chem. Phys. 34 120 (1961)

    Article  ADS  Google Scholar 

  30. M H Cohen and G S Grest Phys. Rev. B 20 1077 (1979)

  31. S M Oversteegen and R Roth J. Chem. Phys. 122 214502 (2005)

    Google Scholar 

  32. K S Schweizer J. Chem. Phys. 91 5802 (1989)

    Google Scholar 

  33. T Geszti, J. Phys. C: Solid State Physics 16 5805 (1983)

    Article  ADS  Google Scholar 

  34. G Gutierrez and J Rogan Phys. Rev. E 69 031201 (2004)

  35. V V Hoang, N H Tuan Anh and H Zung Physica B 390 17 (2007)

    Google Scholar 

  36. M Micoulaut, Y Guissaniand and B Guillot Phys. Rev. E 73 031504 (2006)

    Google Scholar 

  37. O Mishima Phys. Rev. Lett. 85 334 (2000)

  38. V V Hoang J. Phys.: Condens. Matter 18 777 (2006)

  39. P K Hung, H V Hue and L T Vinh J. Non-cryt. Solids 352 3332 (2006)

    Article  ADS  Google Scholar 

  40. P K Hung, L T Vinh, D M Nghiep and P N Nguyen J. Phys.: Condens. Matter 18 9309 (2006)

    Google Scholar 

  41. S Harrington, R Zhang, P H Poole, F Sciortino and H E Stanley Phys. Rev. Lett. 78 2409 (1997)

    Article  ADS  Google Scholar 

  42. I Saika-Voivod, F Sciortino and P H Poole Phys. Rev. E 63 011202 (2000)

    Google Scholar 

  43. M I Ojovan and W E Lee J. Phys.: Condens. Matter 18 11507 (2006)

    Google Scholar 

  44. M Micoulaut, X Yuan and L W Hobb J. Non-Cryst. Solids 353 1961 (2007)

    Article  ADS  Google Scholar 

  45. Andrea Trave et al. Phys. Rev. Lett. 89 245504 (2002)

    Article  ADS  Google Scholar 

  46. B Bijaya Karki, D Bhattarai and L Stixrude Phys. Rev B 76 1 (2007)

    Google Scholar 

  47. T Tamura, G-H Lu and R Yamamoto Phys. Rev. B 69 195204 (2004)

    Google Scholar 

  48. S Maity and G Naresh Patwari Indian J. Phys. 86 173 (2012)

  49. D C Li, L Fang, S K Deng, K Y Kang, W H Wei and H B Ruan Indian J. Phys. 86 447 (2012)

  50. Y Sert, F Ucun and M Böyükata Indian J. Phys. 87 113 (2013)

  51. V V Hoang Physica B 400 278 (2007)

  52. P G Debenedetti and F H Stillinger Nature 410 259 (2001)

  53. M Hawlitzky et al. J. Phys.: Condens. Matter 20 285106 (2008)

  54. R D Oeffner and S R Elliott Phys. Rev. B 58 14791 (1998)

    Google Scholar 

  55. P K Hung and N V Hong Eur. Phys. J. B 71 105 (2009)

  56. K V Shanavas, N Garg and S M Sharma Phys. Rev. B 73 094120 (2006)

    Google Scholar 

  57. J Horbach J. Phys.: Condens. Matter 20 244118 (2008)

  58. T Li, S Huang and J Zhu Chem. Phys. Lett. 471 253 (2009)

    Google Scholar 

  59. M S Shell, P G Debenedetti and F H Stillinger J. Phys.: Condens. Matter 17 S4035 (2005)

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2011.22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, N.V., Lan, M.T. & Hung , P.K. Structural dynamics and diffusion mechanism in glass-forming liquid under high pressure. Indian J Phys 87, 879–887 (2013). https://doi.org/10.1007/s12648-013-0301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0301-9

Keywords

PACS Nos.

Navigation