Skip to main content
Log in

Emission of η meson with high transverse momentum in Au–Au, d–Au and p–p collisions at \(\sqrt{\mathrm{\mit s_{NN}}}=200\) GeV

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Inclusive transverse momentum spectra of η meson in nucleus–nucleus, deuton–nucleus and proton–proton collisions are studied in the framework of a thermalized cylinder model. A single component distribution can only describe a narrow transverse momentum range. In the region of high transverse momentum, the considered distributions of η meson have a tail part at the maximum energy of relativistic heavy ion collider. To explain the wider transverse momentum spectra, we consider the relative importance of hard versus soft processes in the particle production mechanisms. The improved cylinder model utilizing two-component spectra is used to describe the experimental data of the PHENIX Collaboration. It is found that the two-component distribution can describe a broadened range of the transverse momentum. It can offer information about soft and hard interactions in the collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I Arsene et al. Nucl. Phys. A. 757 1 (2005)

    Article  ADS  Google Scholar 

  2. K Adcox et al. Nucl. Phys. A. 757 184 (2005)

    Article  ADS  Google Scholar 

  3. K Aamodt et al. Phys. Rev. Lett. 105 252302 (2010)

    Article  ADS  Google Scholar 

  4. B B Back et al. Phys. Rev. Lett. 94 082304 (2005)

    Article  ADS  Google Scholar 

  5. B B Back et al. Phys. Lett. B. 578 297–303 (2004)

    Article  ADS  Google Scholar 

  6. J Adams et al. Phys. Rev. Lett. 98 062301 (2007)

    Article  ADS  Google Scholar 

  7. G M S Vasconcelos J. Phys. G. 37 094034 (2010)

    Article  ADS  Google Scholar 

  8. R Preghenella et al. Acta Phys. Pol. B. 43 555 (2012)

  9. B C Li, Y Y Fu, L L Wang, E Q Wang and F H Liu J. Phys. G. 39 025009 (2012)

    Article  ADS  Google Scholar 

  10. N Herrmann, J P Wessels and T Wienold Ann. Rev. Nucl. Part. Sci. 49 581 (1999)

    Article  ADS  Google Scholar 

  11. J Su, L Zhu, W J Xie and F S Zhang Phys. Rev. C. 85 017604 (2012)

    Article  ADS  Google Scholar 

  12. M L Miller, K Reygers, S J Sanders and P Steinberg Ann. Rev. Nucl. Part. Sci. 57 205 (2007)

    Article  ADS  Google Scholar 

  13. H De Vries, C W De Jager and C De Vries At. Data Nucl. Data Table. 36 495 (1987)

    Article  ADS  Google Scholar 

  14. P Braun-Munzinger et al. Phys. Lett. B. 518 41 (2001)

    Article  ADS  Google Scholar 

  15. J Rafelski and J Letessier Nucl. Phys. A. 715 98 (2003)

    Article  ADS  Google Scholar 

  16. V Roy and A K Chaudhuri Phys. Rev. C. 81 067901 (2010)

    Article  ADS  Google Scholar 

  17. T Song, C M Ko, S H Lee and J Xu Phys. Rev. C. 83 014914 (2011)

    Article  ADS  Google Scholar 

  18. S K Das, J Alam and P Mohanty Indian J. Phys. 85 1149 (2011)

    Article  ADS  Google Scholar 

  19. A Tawfik Indian J. Phys. 85 755 (2011)

    Article  ADS  Google Scholar 

  20. N Armesto et al. J. Phys. G. 35 054001 (2008)

    Article  Google Scholar 

  21. C Blume arXiv: 0910.5815[nucl-ex] (2009). http://arxiv.org/

  22. A Tawfik, E Gamal and A G Shalaby arXiv: 1209.5379[hep-ph] (2012). http://arxiv.org/

  23. A Tawfik and H Magdy arXiv: 1206.0901[hep-ph] (2012). http://arxiv.org/

  24. A Tawfik Nucl. Phys. A. 859 63 (2011)

    Article  ADS  Google Scholar 

  25. A Tawfik Int. J. Theor. Phys. 51 1396 (2012)

    Article  MATH  Google Scholar 

  26. A Tawfik Prog. Theor. Phys. 126 279 (2011)

    Article  ADS  MATH  Google Scholar 

  27. A Tawfik Indian J. Phys. 86 1139 (2012)

    Article  ADS  Google Scholar 

  28. A Tawfik Indian J.Phys. 86 641 (2012)

    Article  ADS  Google Scholar 

  29. A Tawfik Fizika B. 18 141 (2009)

    Google Scholar 

  30. A Tawfik Europhys. Lett. 75 420 (2006)

    Article  ADS  Google Scholar 

  31. K Werner Phys. Rep. 232 87 (1993)

    Article  ADS  Google Scholar 

  32. G D Westfall et al. Phys. Rev. Lett. 37 1202 (1976)

    Article  ADS  Google Scholar 

  33. F H Liu and Y A Panebratsev Phys. Rev. C. 59 1193 (1999)

    Article  ADS  Google Scholar 

  34. F H Liu and Y A Panebratsev Phys. Rev. C. 59 1798 (1999)

    Article  ADS  Google Scholar 

  35. F H Liu Phys. Lett. B. 583 68 (2004)

    Article  ADS  Google Scholar 

  36. F H Liu, Y Yuan and M Y Duan Nucl. Phys. A. 801 154 (2008)

    Article  ADS  Google Scholar 

  37. S S Adler et al. Phys. Rev. Lett. 96 202301 (2006)

    Article  ADS  Google Scholar 

  38. SS Adler et al. Phys. Rev. Lett. 98 172302 (2007)

    Article  ADS  Google Scholar 

  39. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A. 772 167 (2006)

    Article  ADS  Google Scholar 

  40. A Andronic, P Braun-Munzinger and J Stachel Acta Phys. Polon. B40 1005 (2009)

    ADS  Google Scholar 

  41. H Z Huang J. Phys. G30 S401 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Y. Yuan for her guidance throughout the work. The author thanks also Dr. J. S. Li for his suggestions to improve to the manuscript. This work was supported by the Natural Science Foundation of Business College of Shanxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LL. Emission of η meson with high transverse momentum in Au–Au, d–Au and p–p collisions at \(\sqrt{\mathrm{\mit s_{NN}}}=200\) GeV. Indian J Phys 87, 575–579 (2013). https://doi.org/10.1007/s12648-013-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0263-y

Keywords

PACS Nos.

Navigation