Skip to main content
Log in

Sigma meson in vacuum and nuclear matter

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have obtained the value of the interaction constant g σππ that adjusts the values obtained in the E791 Collaboration at Fermilab and BES Collaboration at the Beijing Electron Positron Collider experiments. To get this we have used the concept of critical width to make compatible the parameters obtained from the Breit-Wigner formula and those obtained from the density function. Also, the total width and effective mass modification of the sigma meson in nuclear matter has been studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in-medium effect of sigma-omega mixing. We have considered, for completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases with respect to its value in vacuum and that the contribution of the sigma-omega mixing effect on the mass shift is relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V Chandra, R Kumar and V Ravishankar Indian J. Phys. 84 1789 (2010)

    Article  ADS  Google Scholar 

  2. A P Mishra, R K Mohapatra, P S Saumia and A M Srivastava Indian J. Phys. 85 909 (2011)

    Article  ADS  Google Scholar 

  3. G Vujanovic, C Gale and J Ruppert Indian J. Phys. 85 1021 (2011)

    Article  ADS  Google Scholar 

  4. P K Panda and B P Das Indian J. Phys. 84 817 (2010)

    Article  ADS  Google Scholar 

  5. A Sharma Indian J. Phys. 84 391 (2010)

    Article  Google Scholar 

  6. B B Deo and L Maharana Indian J. Phys. 84 847 (2010)

    Article  ADS  Google Scholar 

  7. R Grajcarek for the ALICE Collaboration arXiv:1209.1925v1 [nucl-ex] (2012)

  8. S Mitra, S Ghosh and S Sarkar Phys. Rev. C85 064917 (2012)

    ADS  Google Scholar 

  9. M Nanova for the CBELSA/TAPS Collaboration arXiv:1209.1026v1 [nucl-ex] (2012)

  10. H C Jean, J Piekarewicz and A G Williams Phys. Rev. C 34 1981 (1994)

    ADS  Google Scholar 

  11. J Rozynek Acta Phy. Pol. B Proceedings Supplement 5 375 (2012)

    Article  Google Scholar 

  12. F S Navarra, D A Fogaça and L G Ferreira-Filho Indian J. Phys. 85 793 (2011)

    Article  ADS  Google Scholar 

  13. S A Chin Ann. Phys. 108 301 (1977)

    Article  ADS  Google Scholar 

  14. B D Serot and J D Walecka Adv. Nucl. Phys. 16 1 (1986)

    Google Scholar 

  15. A Lavagno PoS(EPS-HEP2011) 478 arXiv:1202.3238v1 [nucl-th] (2012)

  16. K Antipin for the CBM collaboration Indian J. Phys. 84 1663 (2010)

  17. J W Holt, G E Brown, T T Kuo, J D Holt and R Machleidt Phys. Rev. Lett. 100 062501 (2008)

    Article  ADS  Google Scholar 

  18. N Wu arXiv:hep-ex/0104050v1 (2001)

  19. E M Aitala et al. Phys. Rev. Lett. 86 770 (2001)

    Article  ADS  Google Scholar 

  20. A Faessler, T Gutsche, M A Ivanov, V E Lyubovitskij and P Wang Phys. Rev. D68 014011 (2003).

    ADS  Google Scholar 

  21. L Roca and E Oset Nucl. Phys. A 723 129 (2003)

    ADS  Google Scholar 

  22. N A Tornqvist arXiv:hep-ph/0008135v3 (2000)

  23. M Ishida Prog. Theor. Phys. Suppl. 149 190 (2003)

    Article  ADS  Google Scholar 

  24. N A Tornqvist in Proc. of Possible Existence of sigma meson and its implication to hadron physics (Sigma Meson 2000) YITP Kyoto June 2000 Kyoto 102 No. 5 (2001) KEK-proceedings 2000–4 (2001)

  25. J R Morones-Ibarra and A Santos-Guevara Acta Phy. Pol. B38 2555 (2007)

    ADS  Google Scholar 

  26. M Gell-Mann and M Levy Nuovo Cim. 16 705 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. A V Friesen Y L Kalinovsky and V D Toneev Particles and Nuclei Letters. 9 1 (2012)

    Article  ADS  Google Scholar 

  28. T Kunihiro arXiv:hep-ph/0705.0072 (2007)

  29. C S Lim arXiv:hep-ph/0010109v19 (2000)

  30. T Kunihiro arXiv:nucl-th/0103056v1 (2001)

  31. V Koch Int. J. Mod. Phys. E6 203 (1997)

    ADS  Google Scholar 

  32. G Wolf, B Friman and M Soyeur Nucl. Phys. A640 129 (1998)

    ADS  Google Scholar 

  33. J R Morones-Ibarra and A Santos-Guevara Parmana-J. Phys. 68 925 (2007)

    Article  ADS  Google Scholar 

  34. K Saito, K Tsushima, A Thomas and A Williams Phys. Lett. B433 243 (1998)

    ADS  Google Scholar 

  35. W Huo, X Zhang and T Huang Phys. Rev. D65 097505 (2002)

    ADS  Google Scholar 

  36. T Hatsuda and T Kunihiro Nucl. Phys. A 670 186 (2000)

    ADS  Google Scholar 

  37. C Dib and R Rosenfeld Phys. Rev. D63 117501 (2001)

    Article  ADS  Google Scholar 

  38. A Gokalp, A Kucukarslan and O Yilmaz Phys. Rev. D67 073008 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Menchaca-Maciel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menchaca-Maciel, M.C., Morones-Ibarra, J.R. Sigma meson in vacuum and nuclear matter. Indian J Phys 87, 385–390 (2013). https://doi.org/10.1007/s12648-012-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0232-x

Keywords

PACS Nos.

Navigation