Skip to main content
Log in

Quantum field theory from an exponential action functional

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In recent years plentiful research papers have been advocated to the study of analytical techniques in calculus of variations. Many important applications are found in such fields as quantum field theories and many new properties have been raised, studied and explicit solutions have been achieved by many authors. In this work we derive a modification of the Klein–Gordon and Dirac equations of quantum field theories starting from an exponential action functional recently introduced by the author of the present work. Both standard and non-standard Lagrangians are considered. It was observed that some quantum field equations which appear in many field theories dealing with quantum gravitational corrections are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Weinberg Quantum Field Theory (Cambridge: Cambridge University Press) (2000)

    Google Scholar 

  2. V O Rivelles Phys. Lett. B577 137 (2003)

    MathSciNet  ADS  Google Scholar 

  3. C G Bollini and J J Giambiagi Rev. Braz. de Fis. 17 14 (1987)

    Google Scholar 

  4. R J Szabo Phys. Rep. 378 207 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. H Narnhofer and W Thirring Phys. Rev. Lett. 64 1863 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A R El-Nabulsi and G-C Wu Afric. Diasp. J. Math. 13 45 (2012)

    Google Scholar 

  7. A R El-Nabulsi Int. J. Geom. Methods Mod. Phys. 5 863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. A R El-Nabulsi Mod. Phys. Lett. B23 3369 (2009)

    MathSciNet  ADS  Google Scholar 

  9. E Goldfain Commun. Nonlinear Sci. Numer. Simul. 13 1397 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. E Goldfain Chaos Soliton. Fract. 28 913 (2006)

    Article  ADS  MATH  Google Scholar 

  11. E Goldfain Chaos Soliton. Fract. 22 513 (2004)

    Article  ADS  MATH  Google Scholar 

  12. R Herrmann J. Phys. G34 607 (2007)

    ADS  Google Scholar 

  13. R Herrmann Physica A389 4613 (2010)

    ADS  Google Scholar 

  14. R Herrmann Phys. Lett. A372 5515 (2008)

    ADS  Google Scholar 

  15. M Arzano, G Calcagni, D Oriti and M Scalisi Phys. Rev. D84 125002 (2011)

    ADS  Google Scholar 

  16. G Calcagni JHEP 01 065 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. G Calcagni JHEP 1003 120 (2010)

    Article  ADS  Google Scholar 

  18. G Calcagni Phys. Rev. Lett. 104 251301 (2010)

    Article  ADS  Google Scholar 

  19. S K Moayedi, M R Setare and H Moayeri arXiv:1004.0563 (2010)

  20. S K Moayedi, M R Setare and H Moayeri arXiv:1105.1900 (2011)

  21. B S Lakshmi arXiv:0908.1237

  22. B G Sidharth EJTP 7 211 (2011)

    Google Scholar 

  23. Y Mishchenko and C-R Ji Int. J. Mod. Phys. A20 3488 (2005)

    ADS  Google Scholar 

  24. J H Yee arXiv:hepth/9707234 (1997)

  25. A R El-Nabulsi Qual. Theory Dyn. Syst. DOI: 10.1007/s12346-012-0074-0

  26. Z E Musielak J. Phys. A: Math. Theor. 41 055205 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Z E Musielak Chaos Soliton. Fractal. 42 2645 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. V I Arnold Mathematical Methods of Classical Mechanics (New York: Springer) (1978)

    MATH  Google Scholar 

  29. S Nakagiri and J Ha Nonlinear Anal. 47 89 (2000)

    Article  MathSciNet  Google Scholar 

  30. A Pais and G E Uhlenbeck Phys. Rev. 79 145 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A D Boozer Eur. J. Phys. 28 729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. N M Bezares-Roder and H Nandan Indian J. Phys. 82 69 (2008)

    Google Scholar 

  33. B B Deo and L Maharana Indian J. Phys. 84 847 (2010)

    Article  ADS  Google Scholar 

  34. D Kamani Indian J. Phys. 85 1535 (2011)

    Article  ADS  Google Scholar 

  35. S K Das, J Alam and P Mohanty Indian J. Phys. 85 1149 (2011)

    Article  ADS  Google Scholar 

  36. E Megías, E R Arriola and L L Salcedo Indian J. Phys. 85 1191 (2011)

    Article  ADS  Google Scholar 

  37. A R El-Nabulsi Acta Math. Vietnam. 37 149 (2012)

    MathSciNet  MATH  Google Scholar 

  38. A R El-Nabulsi Int. J. Theor. Phys. DOI: 10.1007/s10773-012-1290-8

  39. A R El-Nabulsi RACSAM DOI 10.1007/s13398-012-0086-2

  40. A R El-Nabulsi Indian J. Phys. 86 763 (2012)

  41. A R El-Nabulsi Appl. Math. Lett. 24 1647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. A R El-Nabulsi Appl. Math. Comput. 217 9492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank the Key Laboratory of Numerical Simulation of Sichuan Province and the College of Mathematics and Information Science at Neijiang Normal University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Nabulsi, A.R. Quantum field theory from an exponential action functional. Indian J Phys 87, 379–383 (2013). https://doi.org/10.1007/s12648-012-0187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0187-y

Keywords

PACS Nos.

Navigation