Skip to main content
Log in

Simulated Raman scattering instability of laser beam in a plasma channel

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A high power laser beam propagating through collisional plasma creates a low density channel through which it propagates self-guided. This equilibrium, however, is unstable to stimulated Raman back scattering above a threshold power. The self focusing, leads to enhancement of wave intensity, elevation of electron temperature and reduction of local electron density, leading to diminished attenuation rate. Stimulated Raman scattering instability is treated for laser beam propagating through collisional plasma with thermal conduction in a self-focused filament. Thermal conduction could play a dominant role in determining the energy dissipation of electrons. Inside a filament, the laser undergoes stimulated Raman backscattering. Since the temperature inside a filament is higher and density lower than those outside, the collisional damping rates of the decay waves are lowered and hence the threshold power for B-SRS is reduced. It remains an important process in laser produced plasma. It is also a limiting process in a plasma- loaded free electron laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M S Sodha, A K Ghatak and V K Tripathi Prog. Opt. 13 169 (1976)

    Article  Google Scholar 

  2. A Ghatak Indian J. Phys. 84 1075 (2010)

    Article  ADS  Google Scholar 

  3. M Sodha, S K Agarwal and A Sharma Phys. Plasmas 13 103107 (2006)

    Article  ADS  Google Scholar 

  4. M S Sodha and A Sharma Phys. Plasmas 13 053105 (2006)

    Article  ADS  Google Scholar 

  5. C Venugopal, M J Kurian, E Savithri Devi, P J Jessy, C P Anilkumar and G Renuka Indian J. Phys. 84 319 (2010)

    Article  ADS  Google Scholar 

  6. N Nimje, S Dubey and S Ghosh Indian J. Phys. 84 1567 (2010)

    Article  ADS  Google Scholar 

  7. K Roy and P Chatterjee Indian J. Phys. 85 1653 (2011)

    Article  ADS  Google Scholar 

  8. C L Shepard, J A Tarvin, R L Berger, G E Busch, R R Johnson and R J Schroeder Phys. Fluids 29 583 (1986)

    Article  ADS  Google Scholar 

  9. D Li, Y Ouyang, L Chen, W Cao and S Shi Indian J. Phys. 85 293 (2011)

    Article  ADS  Google Scholar 

  10. W Seka, E A Williams, R S Craxton, L M Goldman, R W Short and K Tanaka Phys. Fluids 27 2181 (1984)

    Article  ADS  Google Scholar 

  11. S Kumar, A K Rai, S B Rai and D K Rai Indian J. Phys. 84 563 (2010)

    Article  ADS  Google Scholar 

  12. C S Liu and V K Tripathi Phys. Fluids 29 4188 (1986)

    Article  ADS  Google Scholar 

  13. V Sajal, D Dahiya and V K Tripathi Phys. Plasmas 14 032109 (2007)

    Article  ADS  Google Scholar 

  14. R Short, W Seka and R Bahr Phys. Fluids 30 3245 (1987)

    Article  ADS  Google Scholar 

  15. R K Drampyan J. Opt. A 6 213 (2004)

    Article  ADS  Google Scholar 

  16. V Sajal Phys. Scr. 74 484 (2006)

    Article  MATH  Google Scholar 

  17. L Yin, BJ Albright, H A Rose, K J Bowers and B Bergen Phys. Plasmas 16 113101 (2009)

    Article  ADS  Google Scholar 

  18. S Kaur and A K Sharma Phys. Plasmas 18 92105 (2011)

    Article  Google Scholar 

  19. Ghanshyam and VK Tripathi Indian J. Phys. 79 515 (2005)

    Google Scholar 

  20. R K Kirkwood, E Dewald, C Niemann, N Meezan, S C Wilks, D W Price, O L Landen, J Wurtele, A E Charman, R Lindberg, N J Fisch, V M Malkin, and E O Valeo Phys. Plasmas 14 113109 (2007)

    Article  ADS  Google Scholar 

  21. L Divol, L J Suter, S Depierreux and W Seka Phys. Plasmas 13 082703 (2006)

    Article  ADS  Google Scholar 

  22. D Sajan, T Kuruvilla, K P Laladhas and I H Joe Indian J. Phys. 85 477 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghanshyam Simulated Raman scattering instability of laser beam in a plasma channel. Indian J Phys 86, 731–738 (2012). https://doi.org/10.1007/s12648-012-0120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0120-4

Keywords

PACS Nos.

Navigation