Skip to main content
Log in

Structural characterization of PVA capped ZnS nanostructured thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

ZnS nanoparticles within the range 3–6 nm have been synthesized by simple chemical method using polyvinyl alcohol as matrix. X-ray diffraction has been used for determining structures of ZnS nanocrystals along with high resolution transmission electron microscopy. For all deposited films the preferential orientation is along (111) direction with some other planes (220) and (311). The grain sizes of the particles have been calculated using both Scherrer’s formula and Williamson–Hall plot. The lattice constant ‘a’ have been obtained using Nelson–Riley plot. The average internal stress, microstrain, dislocation density and degree of preferred orientation in the films are calculated and correlated with molarities of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  Google Scholar 

  2. S Mitra, A Mandal, S Banerjee, A Datta, S Bhattacharya, A Bose and D Chakravorty Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  3. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

    Article  ADS  Google Scholar 

  4. S Tekerek, A Kudret and Ü Alver Indian J. Phys. 85 1469 (2011)

    Article  ADS  Google Scholar 

  5. S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010)

    Article  ADS  Google Scholar 

  6. S Devi and M Srivastva Indian J. Phys. 84 1561 (2010)

    Article  ADS  Google Scholar 

  7. J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)

    Article  Google Scholar 

  8. J Bhadra and D Sarkar Indian J. Phys. 84 1321 (2010)

    Article  ADS  Google Scholar 

  9. A Goudarzi, G M Aval, R Sahraei and H Ahmadpoor Thin Solid Films 516 4953 (2008)

    Article  ADS  Google Scholar 

  10. A Dumbrava, V Ciupina and G Prodan Rom. J. Phys. 50 831 (2005)

    Google Scholar 

  11. C D Lokhande, H M Pathan, M Giersig and H Tributsch Appl. Surf. Sci. 187 101 (2002)

    Article  ADS  Google Scholar 

  12. K K Chattopadhyay and P K Ghosh Nanotechnology at the leading edge (eds.) E V Dirote (New York: Nova Science Publishers, Inc.) Chap 4 pp 101 (2006)

  13. A U Ubale and D K Kulkarni Bull. Mater. Sci. 28 43 (2005)

    Article  Google Scholar 

  14. D Murali Krishna, R P Vijayalakshmi, R Venugopal and B K Reddy Chalcogenide Lett. 7 357 (2010)

    Google Scholar 

  15. D Saikia, P K Gogoi and P K Saikia Chalcogenide Lett. 7 317 (2010)

    Google Scholar 

  16. S B Qadri, E F Skelton, A D Dinsmore, J Z Hu, W J Kim, C Nelson and B R Ratna J. Appl. Phys. 89 115 (2001)

    Article  ADS  Google Scholar 

  17. K K Nanda, S N Sarangi and S N Sahu Nanostruct. Mater. 10 401 (1998)

    Article  Google Scholar 

  18. L L Chai, Y C Zhu, J Du, G F Zou, K Xiong and Y T Qian Chem. Lett. 34 1324 (2005)

    Article  Google Scholar 

  19. D M Kolba, R Ulimanna and J C Ziejlera Electrochim. Acta 43 2751 (1998)

    Article  Google Scholar 

  20. J F Xu and W Ji J. Mater. Sci. Lett. 18 115 (1999)

    Article  Google Scholar 

  21. A Srivastava and H L Vishwakarma Int. J. Nanotechnol. Appl. 3 77 (2009)

    Google Scholar 

  22. H C Ward, S C Ghosh, B Hemtanon, C Thanachayanont and J Dutta Sci. Technol. Adv. Mater. 6 296 (2005)

    Article  Google Scholar 

  23. D P Gogoi, G A Ahmed, D Mohanta, A Choudhury and G A Stanciu Indian J. Phys. 84 1361 (2010)

    Article  ADS  Google Scholar 

  24. J P Borah, J Barman and K C Sarma Int. J. Mod. Phys. B 24 5663 (2010)

    Article  ADS  Google Scholar 

  25. B Barman and K C Sarma J. Optoelectron. Adv. Mater. RC 4 1594 (2010)

    Google Scholar 

  26. N Choudhury and B K Sarma Bull. Mater. Sci. 32 43 (2009)

    Article  Google Scholar 

  27. J B Nelson and D P Riley Proc. Phys. Soc. (London) 57 160 (1945)

    Article  ADS  Google Scholar 

  28. K L Chopra Thin Film Phenomena (New York: McGraw Hill) p 270 (1969)

    Google Scholar 

  29. M J Weber Handbook of Optical Material (California: University of California, CRC Press) p. 117 (2003)

    Google Scholar 

  30. C K De and N K Misra Indian J. Phys. A 71 535 (1997)

    Google Scholar 

  31. G K Williamson and W H Hall Acta Metall. 1 2 (1953)

    Article  Google Scholar 

  32. S Sen, S K Halder and S P Sengupta J. Phys Soc. Jpn. 38 1641 (1975)

    Article  ADS  Google Scholar 

  33. J Barman, J P Borah and K C Sarma Int. J. Mod. Phys. B 23 545 (2009)

    Article  ADS  Google Scholar 

  34. P K Kalita, B K Sarma and H L Das Bull. Mater. Sci. 23 313 (2000)

    Article  Google Scholar 

  35. L Wang, X T Tao, J X Yang, Y Ren, Z Liu and M H Jiang Opt. Mater. 28 1080 (2006)

    Article  ADS  Google Scholar 

  36. R Rossetti, R Huli, J M Gibson and L E Brus J. Chem. Phys. 82 552 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Physics, Department of Nanotechnology and CIF, IIT Guwahati for providing XRD and TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Barman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barman, B., Sarma, K.C. Structural characterization of PVA capped ZnS nanostructured thin films. Indian J Phys 86, 703–707 (2012). https://doi.org/10.1007/s12648-012-0116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0116-0

Keywords

PACS Nos.

Navigation