Skip to main content
Log in

Exact solutions for non-linear Duffing’s equations by He’s homotopy perturbation method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the homotopy perturbation method (HPM) is proposed to solve Duffing’s equation, which yields a series solution. Then, Padé approximation yielding the analytic approximate solution with fast convergence rate and high accuracy is applied for the series solution derived from the HPM. To illustrate the ability and the reliability of the method, two examples are provided. The results reveal that the method is very effective and simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A Nayfeh Perturbation Methods (New York: Wiley) Chapter 2, Section 1, p 24 (1973)

  2. A Malik, F Chand, H Kumar and S C Mishra Indian J. Phys. 86 129 (2012)

    Google Scholar 

  3. H Kocak, Z Dahong and A Yildirim Indian J. Phys. 85 311 (2011)

  4. A Biswas and E V Krishnan Indian J. Phys. 85 1513 (2011)

  5. S Ghafoori, M Motevalli, M G Nejad, F Shakeri, D D Ganji and M Jalaal Curr. Appl. Phys. 11 965 (2011)

    Article  ADS  Google Scholar 

  6. Z Odibat Comput. Appl. Math. 235 2956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. C W Lim and B S Wu Phys. Lett. A 311 365 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. W Murakami, C Murakami, K Hirose and Y H Ichikawa Chaos Solitons and Fractals 15 425 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V Marinca and N Herisanu Chaos Solitons Fractals 37 144 (2008)

    Article  ADS  MATH  Google Scholar 

  10. F Geng Comput. Math. Appl. 61 1935 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. E Yusufoglu Appl. Math. Comput. 177 572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. L Cveticanin Chaos Solitons Fractals 30 1221 (2006)

    Article  ADS  MATH  Google Scholar 

  13. A R Vahidi, E Babolian, Gh Asadi Cordshooli and F Samiee Math. Anal. 3 711 (2009)

    MathSciNet  Google Scholar 

  14. J H He Comput. Methods Appl. Mech. Eng. 178 257 (1999)

    Article  ADS  MATH  Google Scholar 

  15. J H He Nonlinear Mech. 35 37 (2000)

    Article  MATH  Google Scholar 

  16. J H He Appl. Math. Comput. 151 287 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. D D Ganji and A Rajabi Int. Commun. Heat Mass Transf. 33 391 (2006)

    Article  Google Scholar 

  18. Z Z Ganji, D D Ganji and M Esmaeilpour Comput. Math. Appl. 58 2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. M Jalaal and D D Ganji Powder Technol. 198 82 (2010)

    Article  Google Scholar 

  20. M Ghasemi, M Tavassoli Kajani and E Babolian Appl. Math. Comput. 188 538 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. J Biazar, H Ghazvini and M Eslami Chaos Solitons Fractals 39 1253 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S Abbasbandy Appl. Math. Comput. 172 431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. M Dehghan and F Shakeri Phys. Scr. 75 778 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J Biazar and H Ghazvini Phys. Lett. A 366 79 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. D D Ganji Phys. Lett. A 355 337 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M Madani and M Fathizadeh Nonlinear Sci. Lett. A 1 263 (2010)

    Google Scholar 

  27. G A Baker and Jr Essentials of Padé Approximants in Theoretical Physics (New York: Academic Press) Chapter 1, Section B, p 4 (1975)

  28. A George and Jr Baker Encyclopedia of Mathematics and Its Applications (London: Addison-Wesley) Vol. 13, Chapter 2, Section 4, p 61 (1981)

  29. A Ghorbani Chaos Solitons Fractals 39 1486 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G Adomian Solving Frontier Problems of Physics: The Decomposition Method (Dordrecht: Kluwer Academic Publishers) Chapter 12, Section 1, p 238 (1994)

  31. J C Jiao, Y Yamamoto, C Dang and Y Hao Comput. Math. Appl. 43 783 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Azimzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimzadeh, Z., Vahidi, A.R. & Babolian, E. Exact solutions for non-linear Duffing’s equations by He’s homotopy perturbation method. Indian J Phys 86, 721–726 (2012). https://doi.org/10.1007/s12648-012-0115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0115-1

Keywords

PACS Nos.

Navigation