Enhancement of photoluminescence in various Eu x Re(1−x)TTA3Phen (Re = Y, Tb) complexes molecularly doped in PMMA

An Erratum to this article was published on 11 January 2013

Abstract

Europium β-diketonate complexes Eu x Re(1−x)(TTA)3Phen, (Re = Y/Tb, TTA: thenoyl trifluro acetone, Phen: 1–10 Phenanthroline; x = 0.5) have been molecularly doped in poly methyl methacrylate matrix to study the concentration effect on the optical properties such as optical absorption and photoluminescence spectra for four different amounts of weight % (10, 25, 50 and 60 %). All these doped complexes show strong absorption peaks at 334 and 280 nm attributed to n–π* and π–π* transitions of β-diketonate ligand TTA respectively. The close absorptivity of all the complexes is due to the same tris chelated core TTA. Among the three complexes doped in PMMA matrix Eu0.5Tb0.5(TTA)3Phen complex shows hyper chromic shift with enhancement in the luminescent intensity. Enhancement of red light emission have been observed with the increase in wt% of all pure and doped systems in the order of Eu(TTA)3Phen, < Eu0.5Y0.5(TTA)3Phen < Eu0.5Tb0.5(TTA)3Phen. It has been observed that their PL intensity increases in the order of 10 > 25 > 50–60 %. However the luminescence intensity of these blended films with 50 and 60 % of rare earth complexes shows nearly equal value, indicating that the optimal doping concentration is about 50 % under the chosen experimental conditions. Hence these complexes are best suitable in fabricating eco-friendly organic light-emitting devices and displays by solution techniques, which can be operated at very low voltage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. [1]

    P Jiang, W Zhu, Z Gan, W Huang, J Li, H Zeng and J Shi J. Mater. Chem. 19 4551–4556 (2009)

    Article  Google Scholar 

  2. [2]

    J Xie, C Chen, S Chen, Y Yang, M Shao, X Guo, Q Fan, and W Huang Org. Electron. 12 322–328 (2011)

    Article  Google Scholar 

  3. [3]

    U Mitschke and P Bauerle J. Mater. Chem. 10 913 (2000)

    Article  Google Scholar 

  4. [4]

    T Shimoda, Y Matsuki, M Furusawa, T Aoki, I Yudasaka, H Tanaka, H Iwasawa, D Wang, M Miyasaka, and Y Takeuchi Nature 440 783 (2006).

    ADS  Article  Google Scholar 

  5. [5]

    L Jiang, Y Fu, H Li, and W Hu J. Am. Chem. Soc. 130 3937 (2008).

    Article  Google Scholar 

  6. [6]

    M Wang, Y-L Yang, K Deng, and C Wang J. Phys. Chem. C 111 6194 (2007).

    Article  Google Scholar 

  7. [7]

    R Grover, R Srivastava1, O Rana1, D S Mehta, M N Kamalasanan J. Encapsulation Adsorpt. Sci. 1 23–28 (2011)

    Google Scholar 

  8. [8]

    S Ye, F Xiao, Y X Pan, Y Ma and Q Y Zhang Mater. Sci. Eng. 71 1–34 (2010).

  9. [9]

    J Guifang, Y Hun, L Chen, X Wang, Z Mu, H Wu and F Kang Optics Laser Technol. 44 39–42 (2012)

    ADS  Article  Google Scholar 

  10. [10]

    L Kumar, R R Koireng, A Mishra, P Kumar, S K Dhawan, M N Kamalasanan and S Chandra Indian J. Pure Appl. Phys. 43 56–59 (2005).

    Google Scholar 

  11. [11]

    R Srivastava, G Chauhan, K Saxena, S S Bawa, P C Srivastava and M N Kamalasanan Indian J. Pure Appl. Phys. 47(1) 19–23 (2009).

    Google Scholar 

  12. [12]

    N Thejo kalyani, S J Dhoble, R B Pode Adv. Mat. Lett. 2(1) 65–70 (2011)

    Article  Google Scholar 

  13. [13]

    J S Park, M Song, Y-S Gal, J W Lee, S-H Jin Synth. Metals 161 213–218 (2011)

    Google Scholar 

  14. [14]

    L Guang J. Lumin. 131 184–189 (2011)

    Article  Google Scholar 

  15. [15]

    H Jiu J Non Cryst. Solids 352 197–202 (2006)

    ADS  Article  Google Scholar 

  16. [16]

    Y X Ci and Z H Lan Analyst 113 1453 (1988).

    ADS  Article  Google Scholar 

  17. [17]

    J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)

    Article  Google Scholar 

  18. [18]

    A Karmakar and A Ghosh Curr. Appl. Phys. 12 539 (2012)

    ADS  Article  Google Scholar 

  19. [19]

    A Karmakar and A Ghosh J. Appl. Phys. 110 034101 (2011)

    Google Scholar 

  20. [20]

    A K Nath, M Deka and A Kumar Indian J. Phys. 84 1307 (2010)

    ADS  Article  Google Scholar 

  21. [21]

    A Karmakar and A Ghosh Phys. Rev. E 84 051802 (2011)

  22. [22]

    S Bhattacharya and A Ghosh J. Nanosci. Nanotechnol. 8 1922 (2008)

    Article  Google Scholar 

  23. [23]

    M Deka, A K Nath and A Kumar Indian J. Phys. 84 1299 (2010)

    ADS  Article  Google Scholar 

  24. [24]

    A Karmakar and A Ghosh J. Appl. Phys. 107 104113 (2010)

    Google Scholar 

  25. [25]

    N Misra, H S Panda, G Kapusetti, S Jaiswal and S Bhattacharya Indian J. Phys. 85 271 (2011)

    ADS  Article  Google Scholar 

  26. [26]

    S Chaudhary and R J Sengwa Indian J. Phys. 85 1591 (2011)

    ADS  Article  Google Scholar 

  27. [27]

    N Thejo kalyani, S J Dhoble, R B Pode J. Korean Phys. Soc. 57 746–751 (2010)

    Article  Google Scholar 

  28. [28]

    S Morita, T Akashi, A Fujji, M Yoshida, Y Ohmori, K Yoshimato, T Kawai, A A Zakhidov, S B Lee and K Yoshino Synth. Met. 69 433 (1995).

    Article  Google Scholar 

  29. [29]

    T Foster Ann. Phys. 2 55 (1948)

    Article  Google Scholar 

  30. [30]

    G Zhong and K Yang Langmiur 14 5502 (1998).

    MathSciNet  Article  Google Scholar 

  31. [31]

    M Metlay J. Electrochem Soc. 111 1253 (1964).

    Article  Google Scholar 

  32. [32]

    G A Crosby, R E Whan and R M Alire J. Chem. Phys. 34 743 (1961).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Dhoble.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thejo Kalyani, N., Dhoble, S.J. & Pode, R.B. Enhancement of photoluminescence in various Eu x Re(1−x)TTA3Phen (Re = Y, Tb) complexes molecularly doped in PMMA. Indian J Phys 86, 613–618 (2012). https://doi.org/10.1007/s12648-012-0094-2

Download citation

Keywords

  • OLED
  • Blended films
  • Photoluminescence
  • Poly methyl methacrylate
  • Absorption spectra
  • β-Diketonate complexes

PACS Nos.

  • 78.20.Ci
  • 78.55.Fv
  • 85.60.Jb