Skip to main content
Log in

Effect of finite ion temperature on arbitrary amplitude dust ion acoustic solitary waves in quantum plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Effect of finite ion temperature on the formation of arbitrary amplitude dust ion acoustic solitary waves in unmagnetized quantum plasma is investigated using the Sagdeev’s potential approach. It is found that the ion temperature significantly affects the region of existence and formation of dust ion acoustic solitary waves in quantum plasma. The investigation shows that the solitary structure ceases to exist when the different parameters, viz., temperature, dust density and the soliton velocity cross certain critical values. It is also found that the presence of ion temperature increases the range of wave Mach number from subsonic to supersonic regime both in presence or absence of dust particle density in unmagnetized quantum plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  2. A Barkan, R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)

    Article  ADS  Google Scholar 

  3. R L Merlino, A Barkan, C Thompson and N D’Angelo Phys. Plasmas 5 1607 (1998)

    Article  ADS  Google Scholar 

  4. G S Selwyn, K L Haller and E F Patterson J. Vac. Sci. Technol. A 11 1132 (1993); N Nimje, S Dubey and S Ghosh Indian J. Phys. 84 1567 (2010)

    Google Scholar 

  5. H Kersten, H Deutsch, E Stoffels, W W Stoffels, G M W Kroesen and R.Hippler Contrib. Plasma Phys. 41 598 (2001)

    Article  ADS  Google Scholar 

  6. P K Shukla and V P Silin Phys. Scr. 45 508 (1992)

    Article  ADS  Google Scholar 

  7. F Melandsø Phys. Plasmas 3 3890 (1996)

    Article  ADS  Google Scholar 

  8. K Roy and P Chatterjee Indian J. Phys. 85 1653 (2011)

  9. H R Pakzad Indian J. Phys. 84 867 (2010); Z Emami and H R Pakzad Indian J. Phys. 85 1643 (2011)

    Google Scholar 

  10. H R Pakzad Indian J. Phys. 84 867 (2010)

    Article  ADS  Google Scholar 

  11. G Manfredi and M R Feix Phys. Rev. E 53 6460 (1996)

    Article  ADS  Google Scholar 

  12. G V Shpatakovskaya J. Exp. Theor. Phys. 102 466 (2006)

    Article  ADS  Google Scholar 

  13. L K Ang, T J T Kwan and Y Y Lau Phys. Rev. Lett. 91 208303 (2003)

    Article  ADS  Google Scholar 

  14. P A Markowich, C A Ringhofer and C Schmeiser Semiconductor Equations (Vienna: Springer) (1990)

    Book  MATH  Google Scholar 

  15. M Opher, L O Silva, D E Dauger, V K Decyk and J M Dawson Phys. Plasmas 8 2454 (2001)

    Article  ADS  Google Scholar 

  16. Y D Jung Phys. Plasmas 8 3842 (2001)

    Article  ADS  Google Scholar 

  17. F Haas, L G Garcia, J Goedert and G Manfredi Phys. Plasmas 10 3858 (2003)

    Article  ADS  Google Scholar 

  18. F Haas Phys. Plasmas 12 062117 (2005)

    Article  ADS  Google Scholar 

  19. S A Khan and A Mushtaq Phys. Plasmas 14 083703 (2007)

    Article  ADS  Google Scholar 

  20. W Masood, A Mushtaq and R Khan Phys. Plasmas 14 123702 (2007)

    Article  ADS  Google Scholar 

  21. P K Shukla and S Ali Phys. Plasmas 12 114502 (2005)

    Article  ADS  Google Scholar 

  22. A P Misra and C Bhowmik Phys. Plasmas 14 012309 (2007)

    Article  ADS  Google Scholar 

  23. S Mahmood and A Mushtaq Phys. Lett. A 372 3467 (2008)

    Article  ADS  MATH  Google Scholar 

  24. M Tribeche, S Ghebache, K Aoutou and T H Zerguini Phys. Plasmas 15 033702 (2008)

    Article  ADS  Google Scholar 

  25. S Mahmood Phys. Plasmas 15 014502 (2008)

    Article  ADS  Google Scholar 

  26. P Chatterjee and R Roychoudhury Phys. Plasmas 1 2148 (1994)

    Article  ADS  Google Scholar 

  27. P Chatterjee, K Roy, S V Muniandy, S L Yap and C S Wong Phys. Plasmas 16 042311 (2009)

    Article  ADS  Google Scholar 

  28. G Manfredi and F Hass Phys. Rev. B 64 075316 (2001)

    Article  ADS  Google Scholar 

  29. A A Mamun and P K Shukla New J. Phys. 11 103022 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

One of us (R R) is grateful to Council of Scientific and Industrial Research (CSIR) for a grant (project no. 21/(0659)/06/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sahu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, B., Roychoudhury, R. Effect of finite ion temperature on arbitrary amplitude dust ion acoustic solitary waves in quantum plasma. Indian J Phys 86, 401–405 (2012). https://doi.org/10.1007/s12648-012-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0061-y

Keywords

PACS Nos.

Navigation