Skip to main content
Log in

Analysis of high derivative thermoelastic properties of MgO

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have studied high derivative thermoelastic properties such as the pressure derivatives of bulk modulus and the volume dependence of the Grüneisen parameter in case of MgO for a wide range of pressures down to compression V/V0 = 0.6, and temperatures up to 3,000 K approaching the melting temperature. We have used the isothermal pressure–volume equation of state (EOS) based on the adapted polynomial expansion of second order (AP2) due to Holzapfel. The results for the P–V–T relationships and high derivative properties have been obtained using the Holzapfel AP2 EOS. The pressure derivatives of bulk modulus and volume derivatives of the Grüneisen parameter have been determined using the free volume theory. A relationship between the pressure derivative of bulk modulus and the ratio of pressure and bulk modulus has been found to hold good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P I Dorogokupets and A Dewaele High Press. Res. 27 431 (2007)

    Article  ADS  Google Scholar 

  2. P I Dorogokupets and A R Oganov Phys. Rev. B 75 024115 (2007)

    Article  ADS  Google Scholar 

  3. J C Jamieson, J N Fritz and M H Manghnani in High-Pressure Research in Geophysics, (eds.) S Akimoto, M H Manghnani (Center for Academic Publications, Tokyo) p 27 (1982)

  4. P I Dorogokupets and A R Oganov Doklady Earth Sci. 391A 854 (2003)

    Google Scholar 

  5. P I Dorogokupets and A R Oganov Doklady Earth Sci. 395 238 (2004)

    Google Scholar 

  6. P I Dorogokupets, and A R Oganov Doklady Earth Sci. 410 1091 (2006)

    Article  ADS  Google Scholar 

  7. F Birch J Geophys. Res. 83 1257 (1978)

    Article  ADS  Google Scholar 

  8. P Vinet, J H Rose, J Ferrante and J R Smith J. Phys. Condens. Matter 1 1941 (1987)

    Article  ADS  Google Scholar 

  9. W B Holzapfel Z. Kristallogr. 216 473 (2001)

    Article  Google Scholar 

  10. A B Belonoshko, P I Dorogokupets, B Johansson, S K Saxena and L Koci Phys. Rev. B78 107107 (2008)

    Google Scholar 

  11. W B Holzapfel High Press. Res. 25 187 (2005)

    Article  ADS  Google Scholar 

  12. W B Holzapfel High Press. Res. 26 313 (2006)

    Article  ADS  Google Scholar 

  13. J Shanker and B P Singh Physica B 370 78 (2005)

    Article  ADS  Google Scholar 

  14. V Ya Vashchenko and V N Zubarev Sov. Phys. Solid State 5 653 (1963)

    Google Scholar 

  15. W B Holzapfel Rep. Prog. Phys. 59 29 (1996)

    Article  ADS  Google Scholar 

  16. O L Anderson Equations of State of Solids for Geophysics and Ceramic Science (Oxford: Oxford University Press) (1995)

    Google Scholar 

  17. R Sharma and B S Sharma High Temp. High Press. 35/36 337 (2003/2004)

  18. K Sushil Physica B 367 114 (2005)

    Article  ADS  Google Scholar 

  19. S S Kushwah and J Shanker Physica B 253 90 (1998)

    Article  ADS  Google Scholar 

  20. R S Chauhan and C P Singh Physica B 387 352 (2007)

    Article  ADS  Google Scholar 

  21. J C Slater Introduction to Chemical Physics, (New York: McGraw Hill) (1939)

    Google Scholar 

  22. J S Dugdale and D K C MacDonald Phys. Rev. 89 832 (1953)

    Article  ADS  Google Scholar 

  23. T S Duffy and T J Ahrens Geophys. Res. Lett 20 1103 (1993)

    Article  ADS  Google Scholar 

  24. T S Duffy, R J Hemley, and H K Mao Phys. Rev. Lett 74 1371 (1995)

    Article  ADS  Google Scholar 

  25. J Shanker, P Dulari and P K Singh Physica B 404 4083 (2009)

  26. P K Singh Indian J. Pure. Appl. Phys. 49 829 (2011)

  27. S S Kushwah and N K Bharadwaj Solid State Commun. 148 501 (2008)

    Article  ADS  Google Scholar 

  28. R Jeanloz J. Geophys. Res. 94 5873 (1989)

    Article  ADS  Google Scholar 

  29. J Shanker, B P Singh and H K Baghel Physica B 387 409 (2007)

    Article  ADS  Google Scholar 

  30. J Shanker, B P Singh and K Jitendra Condens. Matter Phys. 11 681 (2008)

    Google Scholar 

  31. J Shanker, B P Singh and K Jitendra Condens. Matter Phys. 12 205 (2009)

    Article  Google Scholar 

  32. S S Kushwah, P Kumar and J Shanker Physica B 229 85 (1996)

    Article  ADS  Google Scholar 

  33. J Shanker and S S. Kushwah Physica B 245 190 (1998)

    Article  ADS  Google Scholar 

  34. J Shanker and S S Kushwah High Temp. High Press. 33 207 (2001)

    Article  Google Scholar 

  35. J Shanker, B P Singh and S K Srivastava Phys. Earth Planet Inter. 147 333 (2004)

    Article  ADS  Google Scholar 

  36. A B Belonoshko and L S Dubrovinsky Am. Mineral. 81 303 (1996)

    Google Scholar 

  37. R S Chauhan, K Lal and C P Singh Indian J. Phys. 85 1341 (2011)

  38. R S Chauhan, P Singh and C P Singh Indian J. Phys. 85 421 (2011)

  39. B Saikia and P R Borthakur Indian J. Phys. 84 675 (2010)

  40. J K Baria and A R Jain Indian J. Phys. 84 1509 (2010)

  41. S K Srivastava and P Sinha Indian J. Phys. 85 1257 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.K. Analysis of high derivative thermoelastic properties of MgO. Indian J Phys 86, 259–265 (2012). https://doi.org/10.1007/s12648-012-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0048-8

Keywords

PACS No.

Navigation