Indian Journal of Physics

, Volume 86, Issue 3, pp 225–235 | Cite as

Towards a broadband chirped pulse Fourier transform microwave spectrometer

Original Paper


This article gives a brief review of microwave spectroscopy and the experimental techniques used for obtaining microwave spectrum of molecules and complexes since 1950s. It presents a brief summary of the pulsed nozzle Fourier transform microwave (PNFTMW) spectrometer, fabricated in our laboratory, and discusses some of the important results obtained using the spectrometer. The most significant among the results from this spectrometer is the direct structural determination of weakly bound complexes involving H2O/H2S. These have challenged the conventional wisdom on hydrogen bonding leading us to propose a modern definition for the same through IUPAC. The limitations of the PNFTMW spectrometer and the need for the new chirped pulse Fourier transform microwave spectrometer are discussed as well. Moreover, preliminary results from our laboratory on generating a 1 µs chirped pulse of 1 GHz bandwidth are given.


Rotational spectroscopy Supersonic beams Chirp-pulse Fourier-transform microwave spectrometer 


33.20.Bx 07.57.Pt 84.40.-x 


  1. [1]
    C H Townes and A L Schawlow Microwave Spectroscopy (New York: McGraw Hill) (1955)Google Scholar
  2. [2]
    W Gordy and R L Cooke Microwave Molecular Spectra (New York: Wiley) (1984)Google Scholar
  3. [3]
    D Christen, L H Coudert, R D Suenram and F J Lovas J. Mol. Spectrosc. 172 57 (1995)ADSCrossRefGoogle Scholar
  4. [4]
    D Christen, L H Couder, J A Larsson and D Cremer J. Mol. Spectrosc. 205 185 (2001)ADSCrossRefGoogle Scholar
  5. [5]
    Th Brupbacher, J Makarewicz and A Bauder J. Chem. Phys. 101 9736 (1994)ADSCrossRefGoogle Scholar
  6. [6]
    J U Grabow et al. J. Chem. Phys. 102 1181 (1995)ADSCrossRefGoogle Scholar
  7. [7]
    H A Fry and S G Kukolich J. Chem. Phys. 76 4387 (1982)ADSCrossRefGoogle Scholar
  8. [8]
    S A Marshall and J Weber Phys. Rev. 105 1502 (1957)ADSCrossRefGoogle Scholar
  9. [9]
    O Desyatnyk, L Pszczolkowski, S Thorwirth, T M Krygowski and Z Kisiel Phys. Chem. Chem. Phys. 7 1708 (2005)CrossRefGoogle Scholar
  10. [10]
    E Tannenbaum, R J Myers and W D Gwinn J. Chem. Phys. 25 42 (1956)ADSCrossRefGoogle Scholar
  11. [11]
    J Nakagawa, M Imachi and M Hayashi J. Mol. Struct. 112 201 (1984)ADSCrossRefGoogle Scholar
  12. [12]
    G G Brown, B C Dian, K O Douglass, S M Geyer and B H Pate J. Mol. Spectrosc. 238 200 (2006)ADSCrossRefGoogle Scholar
  13. [13]
    R H Hughes and E B Wilson Phys. Rev. 71 562 (1947)ADSCrossRefGoogle Scholar
  14. [14]
    K B McAfee, R H Hughes and E B Wilson Rev. Sci. Instrum. 20 821 (1949)ADSCrossRefGoogle Scholar
  15. [15]
    B N Bhattacharya, W Gordy and O Fujii Bull. Am. Phys. Soc. 2 213 (1957)Google Scholar
  16. [16]
    B N Bhattacharya and W Gordy Phys. Rev. 119 144 (1960)ADSCrossRefGoogle Scholar
  17. [17]
    R H Dicke Phys. Rev. 93 99 (1954)ADSMATHCrossRefGoogle Scholar
  18. [18]
    R H Dicke and R H Romer Rev. Sci. Instrum. 26 915 (1955)ADSCrossRefGoogle Scholar
  19. [19]
    R H Romer and R H Dicke Phys. Rev. 99 532 (1955)ADSCrossRefGoogle Scholar
  20. [20]
    J Ekkers and W H Flygare Rev. Sci. Instrum. 47 448 (1976)ADSCrossRefGoogle Scholar
  21. [21]
    G Bestmann, H Dreizler, E Fliege and W Stahl J. Mol. Struct. 97 215 (1983)ADSCrossRefGoogle Scholar
  22. [22]
    G Bestmann, H Dreizler, H Mader and U Andresen Z. Naturforsch. 35 392 (1980)ADSGoogle Scholar
  23. [23]
    M Oldani and A Bauder Chem. Phys. Lett. 108 7 (1984)ADSCrossRefGoogle Scholar
  24. [24]
    M Oldani, T -K Ha and A Bauder Chem. Phys. Lett. 115 317 (1985)ADSCrossRefGoogle Scholar
  25. [25]
    J S Muenter Atomic and Molecular Beam Methods, vol. II (G. Scoles, D Leine and U Valbusa Eds) (New York: Oxford University Press) p. 15 (1992)Google Scholar
  26. [26]
    T R Dyke, B J Howard and W Klemperer J. Chem. Phys. 56 2442 (1972)ADSCrossRefGoogle Scholar
  27. [27]
    T R Dyke and J S Muenter J. Chem. Phys. 60 2929 (1974)ADSCrossRefGoogle Scholar
  28. [28]
    T J Balle and W H Flygare Rev. Sci. Instrum. 52 33 (1981)ADSCrossRefGoogle Scholar
  29. [29]
    K C Janda, J C Hemminger, J S Winn, S E Novick, S J Harris and W Klemperer J. Chem. Phys. 63 1419 (1975)ADSCrossRefGoogle Scholar
  30. [30]
    B F Henson, G V Hartland, V A Venturo and P Felker J. Chem. Phys. 97 2189 (1992)ADSCrossRefGoogle Scholar
  31. [31]
    E Arunan and H S Gutowsky J. Chem. Phys. 98 4294 (1993)ADSCrossRefGoogle Scholar
  32. [32]
    E Arunan, A P Tiwari, P K Mandal and P C Mathias Curr. Sci. 82 533 (2002)Google Scholar
  33. [33]
    R D Suenram, F J Lovas, G T Fraser, J Z Gillies, C W Gillies and M Onida J. Mol. Spectrosc. 137 127 (1989)ADSCrossRefGoogle Scholar
  34. [34]
    M Kruger and H Dreizler Z. Naturforsch. 45a 724 (1990)Google Scholar
  35. [35]
    J U Grabow and W Stahl Z. Naturforsch. 45a 1043 (1990)Google Scholar
  36. [36]
    V Storm, H Dreizler, D Consalvo, J U Grabow and I Merke Rev. Sci. Instrum. 67 2714 (1996)ADSCrossRefGoogle Scholar
  37. [37]
    I Merke, W Stahl and H Dreizler Z. Naturforsch. 49a 490 (1994)Google Scholar
  38. [38]
    K C Etchison, C T Dewberry, K E Kerr, D W Shoup and S A Cooke J. Mol. Spectrosc. 242 39 (2007)ADSCrossRefGoogle Scholar
  39. [39]
    G S Grubbs II, C T Dewberry, K C Etchison, M M Seraffin, S A Peeples and S A Cooke J. Mol. Spectrosc. 251 378 (2008)ADSCrossRefGoogle Scholar
  40. [40]
    J A Shea and E J Campbell J. Chem. Phys. 81 5326 (1984)ADSCrossRefGoogle Scholar
  41. [41]
    T Emilsson, T D Klots, R S Ruoff and H S Gutowsky J. Chem. Phys. 93 6971 (1990)ADSCrossRefGoogle Scholar
  42. [42]
    P Thaddeus and M C McCarthy Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 757 (2001)ADSCrossRefGoogle Scholar
  43. [43]
    V D Gordon, M C McCarthy, A J Apponi and P Thaddeus Astrophys. J. Supp. 138 297 (2002)ADSCrossRefGoogle Scholar
  44. [44]
    Y Sumiyoshi, Y Endo and Y Ohshima J. Mol. Spectrosc. 222 22 (2003)ADSCrossRefGoogle Scholar
  45. [45]
    K Seki, Y Sumiyoshi and Y Endo J. Chem. Phys. 117 9750 (2002)ADSCrossRefGoogle Scholar
  46. [46]
    R D Suenram and F J Lovas Astrophys. J. Lett. 342 L103 (1989)ADSCrossRefGoogle Scholar
  47. [47]
    S G Batten, A G Ward and A C Legon J. Mol. Struct. 780781 300 (2006)CrossRefGoogle Scholar
  48. [48]
    S Antolinez, A Lesarri, S Mata, S Blanco, J C Lopez and J L Alonso J. Mol. Struct. 612 125 (2002)ADSCrossRefGoogle Scholar
  49. [49]
    S A Cooke and M C L Gerry J. Mol. Spectrosc. 234 195 (2005)ADSCrossRefGoogle Scholar
  50. [50]
    J L Aonso, E J Cocinero, A Lesarri, S E Sanz and J C Lopez Angew. Chem. Int. Ed. 45 3471 (2006)CrossRefGoogle Scholar
  51. [51]
    E Arunan, P K Mandal, M Goswami and B Raghavendra Proc. Ind. Natl. Sci. Acad. 71A 377 (2005)Google Scholar
  52. [52]
    M Goswami, P K Mandal, D H Ramadoss and E Arunan Chem. Phys. Lett. 393 22 (2004)ADSCrossRefGoogle Scholar
  53. [53]
    P K Mandal, D J Ramdass and E Arunan Phys. Chem. Chem. Phys. 7 2740 (2005)CrossRefGoogle Scholar
  54. [54]
    P K Mandal, M Goswami and E Arunan J. Indian Inst. Sci. 85 353 (2005)Google Scholar
  55. [55]
    P K Mandal PhD Thesis (Indian Institute of Science: Bangalore) (2005)Google Scholar
  56. [56]
    M Goswami and E Arunan Phys. Chem. Chem. Phys. 13 14153 (2011)CrossRefGoogle Scholar
  57. [57]
    M Goswami and E Arunan J. Mol. Spectrosc. 268 147 (2011)ADSCrossRefGoogle Scholar
  58. [58]
    P Aiswaryalakshmi Ph.D Thesis (Indian Institute of Science, Bangalore) (2012)Google Scholar
  59. [59]
    K I Peterson and W Klemperer J. Chem. Phys. 85 725 (1986)ADSCrossRefGoogle Scholar
  60. [60]
    M Goswami and E Arunan Phys. Chem. Chem. Phys. 11 8974 (2009)CrossRefGoogle Scholar
  61. [61]
    P K Mandal and E Arunan J. Chem. Phys. 114 3880 (2001)ADSCrossRefGoogle Scholar
  62. [62]
    B Raghavendra, P K Mandal and E. Arunan Phys. Chem. Chem. Phys. 8 5276 (2006)CrossRefGoogle Scholar
  63. [63]
    E Arunan et al. Pure Appl. Chem. 83 1637 (2011)CrossRefGoogle Scholar
  64. [64]
    D Mani, P Aishwaryalakshmi and E Arunan Asian J. Spectrosc. (Special Issue) 31 (2010)Google Scholar
  65. [65]
    E Arunan, S Dev and P K Mandal Appl. Spectrosc. Rev. 39 131 (2004)ADSCrossRefGoogle Scholar
  66. [66]
    J Razec and P Hobza J. Chem. Theory Comput. 4 1835 (2008)CrossRefGoogle Scholar
  67. [67]
    G G Brown, B C. Dian, K O Douglass, S M Geyer, S T Shipman and B H Pate Rev. Sci. Instrum. 79 053103 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2012

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electrical Communication EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations