Advertisement

Indian Journal of Physics

, Volume 86, Issue 2, pp 89–96 | Cite as

Study of blood viscosity at low shear rate and its flow through viscoelastic tubes and ducts

  • N. MisraEmail author
  • A. Sarkar
  • A. Srinivas
  • G. Kapusetti
Original Paper

Abstract

A nonlinear mathematical model is developed analytically to study the flow characteristics of visco-elastic fluid through a visco-elastic pipe when it is subjected to external body acceleration. The equations governing the motion of the system are solved analytically with the use of appropriate boundary conditions. For the present scope of study the flow of visco-elastic fluid (blood) in smaller artery which is visco-elastic in nature has been taken. The artery is assumed to be a flexible cylindrical tube containing a non-Newtonian fluid. The unsteady flow mechanism in the artery is subjected to a pulsatile pressure gradient arising from the normal functioning of the heart and also the external body acceleration. Numerical models have finally been developed for Newtonian and Non-Newtonian fluid in order to have a thorough quantitative measure of the effects of body acceleration on the flow velocity, volume flow rate and the wall shear stress of blood in normal human artery and when the artery gets stiffer, just to validate the applicability of the present mathematical model.

Keywords

Viscoelastic fluid Blood Non-Newtonian fluid Flow rate Shear Navier–Stokes equation 

PACS No.

87.19.U- 

References

  1. [1]
    Z Lou and W J Yang Crit. Rev. Biomed. Eng. 19 455 (1992)Google Scholar
  2. [2]
    D W Liepsch and S T Moravec Biorheology 21 571 (1984)Google Scholar
  3. [3]
    D N Ku and D W Liepsch Biorheology 23 359 (1986)Google Scholar
  4. [4]
    J C Mirsa and B K Sahu Comput. Math. Appl. 16 993 (1988)MathSciNetCrossRefGoogle Scholar
  5. [5]
    N Misra, G Kapusetti, D K Pattanayak and A Kumar Indian J. Phys. 85 1393 (2011)ADSCrossRefGoogle Scholar
  6. [6]
    N Misra, H S Panda, G Kapusetti, S Jaiswal and S Bhattacharya Indian J. Phys. 85 271 (2011)ADSCrossRefGoogle Scholar
  7. [7]
    N Misra, S Bharti, G Kapusetti, D K Upadhyay, S Jaiswal, H S Panda and R Prakash Indian J. Phys. 85 703 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    E Belardinelli, M Ursino and E Lemmi ASME J. Biomech. Eng. 111 233 (1989)CrossRefGoogle Scholar
  9. [9]
    P Chaturani and V Palanisamy Int. J. Eng. Sci. 29 113 (1991)zbMATHCrossRefGoogle Scholar
  10. [10]
    P Chaturani and A S A Wassf Isaac Int. J. Eng. Sci. 33 1807 (1995)zbMATHCrossRefGoogle Scholar
  11. [11]
    S Chakravarty and P K Mandal Math. Comput. Model. 24 43 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J C Mirsa and B Pal Math. Comput. Model. 29 89 (1999)Google Scholar
  13. [13]
    S Chakravarty and P K Mandal Int. J. Non Linear Mech. 35 779 (2000)zbMATHCrossRefGoogle Scholar
  14. [14]
    M El–Shahed Appl. Math. Comput. 138 479 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    P K Mandal Int. J. Non Linear Mech. 40 151 (2005)ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    V P Srivastava and M Saxena Rheol. Acta. 34 406 (1995)CrossRefGoogle Scholar
  17. [17]
    H B Atabek Biophys. J. 8 626 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2012

Authors and Affiliations

  • N. Misra
    • 1
    Email author
  • A. Sarkar
    • 2
  • A. Srinivas
    • 2
  • G. Kapusetti
    • 1
  1. 1.School of Biomedical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Mechanical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations