Skip to main content

Generalized relativistic dynamics in a non-inertial reference frame

Abstract

Generalized relativistic field equations have been derived for dynamics in a non-inertial reference frame interpreted as a Finsler space where events are specified by both spacetime coordinates and corresponding velocities (tangent vectors). The field equations follow in two alternative forms from exact general conservation laws derived through application of Cartan covariant differentiation within the framework of Finsler geometry. Velocity-dependent (curvature) terms in the field equations can account for the anisotropy of the gravitational field, together with the associated acceleration and expansion of the universe.

This is a preview of subscription content, access via your institution.

References

  1. A Einstein The Meaning of Relativity (London: Routeledge) 6th (ed.), p59 (2003)

    Google Scholar 

  2. L D Landau and E M Lifshitz The Classical Theory of Fields (Oxford: Pergamon Press) 4th (ed.), pp 1, 226 (1975)

    Google Scholar 

  3. R M Wald General Relativity (USA, Chicago University Press) (1984)

    MATH  Google Scholar 

  4. S F Rutz A Gen. Relativ. Gravit. 25 11 (1993)

    Google Scholar 

  5. S F Rutz and P J MCcarthy Gen. Relativ. Gravit. 25 2 (1993)

    Google Scholar 

  6. I W Roxburgh Gen. Relativ. Gravit. 24 419 (1992)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  7. I Bukataru Nonholonomic Frames in Finsler Geometry, BJGA 7 1 (2002)

    Google Scholar 

  8. M Yazaki Int. J. Mod. Phys. D3 393 (1994)

    MathSciNet  ADS  Google Scholar 

  9. Ikeda Satoshi Ann. Phys. 7 558, Folge, Band 44, Heft 8 (1987)

    Google Scholar 

  10. H Rund The Differential Geometry of Finsler Spaces (Springer) (1959)

  11. G S Asanov Finsler Geometry, Relativity and Gauge Theories (Dortrecht, Holland: D Reidei Publishing Company) (1985)

    MATH  Google Scholar 

  12. J P Ostriker and P Steinhardt Science 300 1909 (2003)

    Article  ADS  Google Scholar 

  13. R P Kirshner Science 300 1914 (2003)

    Article  ADS  Google Scholar 

  14. L Sindoni The Higgs Mechanism in Finsler spacetimes, arXiv:gr-qc/0712.3518v1.

  15. C Lammerzahl, D Lorek and H Dittus Gen. Relativ. Gravit. 41 1345 (2009); arXiv:gr-qc/0811.0282v1

    Article  MathSciNet  ADS  Google Scholar 

  16. S I Vacaru Critical Remarks on Finsler Modifications of Gravity and Cosmology (ed.) Zhe Chang and Xin Li; arXiv:gr-qc/1003.0044v1

  17. Z Chang and Xin Li Phys. Lett. B676 173 (2009); arXiv:gr-qc/0901.1023v1

    MathSciNet  ADS  Google Scholar 

  18. Z Chang and Xin Li Phys. Letts. B668 453 (2008)

    MathSciNet  ADS  Google Scholar 

  19. Xin Li and Z Chang Toward a gravitation theory in Berwald-Finsler space; arXiv:gr-qc/0711.1934v1

  20. S I Vacaru Finsler and Lagrange Geometries in Einstein and String Gravity; arXiv:gr-qc/0801.4958v1

  21. S I Vacaru, P Stavrinos, E Galurov and D Ganta Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity; arXiv:gr-qc/0508023.

  22. S I Vacaru On General solutions for Field Equations in Einstein and Higher Dimension Gravity; arXiv:gr-qc/0909.3949v4

  23. S I Vacaru Nonholonomic Distributions and gauge Models of Einstein Gravity; arXiv:gr-qc/0902.0911v4.

  24. P C Stavrinos, A P Kouretsis and M Stathakopoulos Gen.Rel.Grav. 40 1403 (2008); arXiv:gr-qc/0612157v4

    MATH  Article  MathSciNet  ADS  Google Scholar 

  25. A G Cohen and S L Glashow Phys. Rev. Lett. PRL97 021601 (2006); arXiv:hep-ph/0601236

    Article  MathSciNet  ADS  Google Scholar 

  26. G W Gibbons, J. Gomis and C N Pope Phys. Rev. D76 081701 (2007); arXiv:hep-th/0707.2174v2

    MathSciNet  ADS  Google Scholar 

  27. A P Kouretsis, M Stathakopoulos and P C Stavrinos Phys. Rev. D79 104011 (2009); arXiv:gr-qc/0810.3267v3

    MathSciNet  ADS  Google Scholar 

  28. G Y Bogoslovsky Some physical displays of the spacetime anisotropy relevant to the feasibility of its being detected at a laboratory; arXiv:gr-qc/0706.2621v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dismas Simiyu Wamalwa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wamalwa, D.S., Omolo, J.A. Generalized relativistic dynamics in a non-inertial reference frame. Indian J Phys 84, 1241–1255 (2010). https://doi.org/10.1007/s12648-010-0108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-010-0108-x

Keywords

  • Relativistic dynamics
  • non-inertial reference frame
  • Finsler space
  • Cartan covariant derivative
  • field equations