Skip to main content
Log in

Environment induced entanglement in cavity-QED

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effects of dissipative dynamics on the magnitude of entanglement generated In atom-photon interactions inside cavities is studied. We present some concrete examples of environment Induced entanglement in alom-photon interactions. We consider various dissipative atom-cavity systems and show that their collective dynamics can be used to maximize entanglement for intermediate values of the cavity leakage parameter κ. We first consider the interaction of a single two-level atom with one of two coupled microwave cavities and show analytically that the atom-cavity entanglement increases with cavity leakage. We next consider a system of two atoms passing successively through a cavity and derive the expression for the maximum value of in terms of the Rabi angle gt, for which the two-atom entanglement can be Increased. Finally, numerical investigation of micromaser dynamics also reveals the increase of two-atom entanglement with stronger cavity-environment coupling for experimentally attainable values of the micromaser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M A Nielsen and I L Chuang, Quantum Computation and Quantum Information (Cambridge, UK: Cambridge University Press) (2000)

    MATH  Google Scholar 

  2. See, for example, J I Cirac and P Zoller Phys. Rev. A50 R2799 (1994); J I Cirac, P Zoller, H J Kimble and H Mabuchi Phys. Rev. Lett 78 3221 (1997); L -M Duan, M D Lukin, J I Cirac and P Zoller Nature 414 413 (2001); E Solano, G S Agarwal and H Watther Phys. Rev. Lett 90 027903 (2003); S G Clark and A S Parkins Phys. Rev. Lett 90 047905 (2003); L -M Duan, B Wang, H J Kimble Phys. Rev. All 032333 (2005); G S Agarwal and K T Kapale Phys, Rev, A73 022315 (2006)

    ADS  Google Scholar 

  3. See, for instance, E Hagley. X Matre. G Nogues, C Wunderlich, M Brune, J M Raimond and S Haroche Phys. Rev, Lett 79 1 (1997); A Rauschenbeutel, P Bertet. S Osnaghi, G Nogues, M Brune, J M Raimond and S Haroche Phys. Rev. A 64 050301(R) (2001); A AufTeves, P Maioli, T Meunier, S Gleyzes. G Nogues, M Brune, J M Raimond and S Haroche Phys, Rev. Lett 91 230405 (2003); S Numann, M Hijlkema, B Weber, F Rohde, G Rempe and A Kuhn Phy. Rev. Lett 95 173602 (2005); D N Matsukevich, T Chanelire, S D Jenkins, S -Y Lan, TAB Kennedy and A Kuzmich Phys. Rev. Lett. 96 030405 (2006)

    Article  ADS  Google Scholar 

  4. J M Raimond, M Brune and S Haroche Rev. Mod. Phys. 73 565 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  5. W H Zurek Phys. Rev. D 26 1662 (1982); E Joos and H D Zeh Z. Phys. B 59 223 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  6. M S Kim. Jlnhyoung Lee, D Ahn and P L Knight Phys Rev. A 65 040101(R) (2002)

    ADS  Google Scholar 

  7. M B Plenio, S F Huelga, A Beige and P L Knight Phys. Rev. A 59 2468 (1999)

    Article  ADS  Google Scholar 

  8. S Schneider and G J Milbum Phys. Rev. A 65 042107 (2002); B Kraus and J I Cirac Phys. Rev. Lett. 92 013602 (2004); S -B U and J -B Xu, quant-ph/0505216

    Article  ADS  Google Scholar 

  9. M B PJenio and S F Hulega Phys. Rev. Lett. 88 197901 (2002)

    Article  ADS  Google Scholar 

  10. D Braun Phys. Rev. Lett. 89 277901 (2002)

    Article  ADS  Google Scholar 

  11. G S Agarwal in Springer Tracts in Modem Physics, 70 (Berlin & New York: Springer-Verlag) (1974)

    Google Scholar 

  12. B Ghosh, A S Majumdar and N Nayak Int. J. Quant. Inf. 6 169 (2007)

    Article  Google Scholar 

  13. G Rempe, F Schmidt-Kaler and H Walther Phys. Rev. Lett. 64 2783 (1990)

    Article  ADS  Google Scholar 

  14. M Brune, E Hagley, J Dreyer, X Matre, A Maali, C Wunderlich, J M Raimond and S Haroche Phys. Rev. Lett. 77 4887 (1996); M Weidinger, B T H Varcoe, R Heerlein and H Walther Phys. Rev. Lett. 82 3795 (1999)

    Article  ADS  Google Scholar 

  15. B Ghosh, A S Majumdar and N Nayak Phys. Rev. A 74 052315 (2007)

    Article  ADS  Google Scholar 

  16. S J D Phoenix and S M Bamett J. Mod. Opt 40 979 (1993); J I Cirac and P Zoller Phys. Rev. A 50 R2799 (1994)

    Article  ADS  Google Scholar 

  17. A Datta, B Ghosh, A S Majumdar and N Nayak Europhys Lett. 67 934 (2004)

    Article  ADS  Google Scholar 

  18. A S Majumdar and N Nayak Phys. Rev. A 64 013A21 (2001)

    Article  Google Scholar 

  19. L Davidovich, N Zagury. M Brune, J M Raimond and S Haroche Phys. Rev A 50 R895 (1994)

    Article  ADS  Google Scholar 

  20. S Haroche and J M Raimond in “Advances in Atonic ana Molecular Physics” (eds.) D R Bates and B Bedereon 20 (New York: Academic) (1985)

    Google Scholar 

  21. S Hill and W K Wootters Phys. Rev. Lett. 78 5022 (1997); W K Woofers Phys. Rev. Lett. 80 2245 (1998)

    Article  ADS  Google Scholar 

  22. C H Bennett Lecture course in the School on Quantum Physics end information Processing. TIFR, Mumbai, 2002 (http://qpip-server.tcs3.tifr.res.in/qpip/HTML/Courses/Bennett/riFR2,pdf)

    Google Scholar 

  23. B Ghosh, A S Majumdar and N Nayak int J. Quant. Inf. 4 665 (2006)

    Article  MATH  Google Scholar 

  24. N Nayak Opt. Commun. 118 114 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, N., Ghosh, B. & Majumdar, A.S. Environment induced entanglement in cavity-QED. Indian J Phys 84, 1039–1050 (2010). https://doi.org/10.1007/s12648-010-0098-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-010-0098-8

Keywords

Navigation