Advertisement

Indian Journal of Physics

, Volume 84, Issue 6, pp 687–691 | Cite as

On the optical properties of SnO2 thin films prepared by sol-gel method

  • Th DianaEmail author
  • K. Nomita Devi
  • H. Nandakumar Sarma
Article

Abstract

Tin oxide (SnO2) thin films are prepared by spin coating onto well-cleaned glass substrates using stannous chloride and methanol solution as complexing agent. Films of different thicknesses are annealed at 400° C. Optical properties are studied using UV-Visible spectrophotometer. The films are highly transparent in the visible region. It is found that transmission increases in coated glass (∼92%) than uncoated glass. This may find applications in antireflection coating. Energy band gaps obtained are in the range of 4.10–4.12 eV. Refractive index variation with thickness is also studied and is between 1.77–1.91. The thicknesses of the film are of the order 2300, 3500 and 4800 Å. These results have been discussed in the light of literature.

Keywords

Tin dioxide thin film sol-gel method optical properties 

References

  1. [1]
    M Miki-Yoshida and E Andrade Thin Solid Films 87 224 (1993)Google Scholar
  2. [2]
    E Shanthi, A Banerjee, V Dutta and K L Chopra J. Appl. Phys. 53 1615 (1982)CrossRefADSGoogle Scholar
  3. [3]
    A Mani, N Karuppiah and R Mahalingam Mater. Res. Bull. 25 799 (1990)CrossRefGoogle Scholar
  4. [4]
    T Minami, S Takata, H Sato and H Sonohara J. Vac. Sci. Technol. A 13 1095 (1995)ADSGoogle Scholar
  5. [5]
    A Goetzberger and C Hebling Sol. Energy Mater. Sol. Cells 62 1 (2000)CrossRefGoogle Scholar
  6. [6]
    H Kim, A Pique, J S Horwitz, H Mattoussi, H Murata, Z H Kafafi and D B Chrisey Appl. Phys. Lett. 74 3444 (1999)CrossRefADSGoogle Scholar
  7. [7]
    H Kim, C M Gilmore, A Pique, J S Horwitz, H Mattoussi, H Murata, Z H Kafafi, and D B Chrisey J. Appl. Phys. 86 6451 (1999)CrossRefADSGoogle Scholar
  8. [8]
    P Nelli, G Faglia, G Sverbeglieri, E Cereda, G Garbetta, A Dieguez, A R Rodriguez and J R Morante Thin Solid Films 249 371 (2000)Google Scholar
  9. [9]
    J Kane, H P Scweizer and W Kern J. Electrochem. Soc. 123 270 (1976)CrossRefGoogle Scholar
  10. [10]
    B J Baliga and S K Gandhi J. Electrochem. Soc. 123 941 (1976)CrossRefGoogle Scholar
  11. [11]
    A Rohatgi, T R Viverito and L H Slack J. Am. Ceram. Soc. 57 278 (1974)CrossRefGoogle Scholar
  12. [12]
    H Kim and H A Laitinen J. Am. Ceram. Soc. 58 23 (1975)CrossRefGoogle Scholar
  13. [13]
    H Watanabe Jpn. J. Appl. Phys. 9 1551 (1970)CrossRefADSGoogle Scholar
  14. [14]
    D E Carlson J. Electrochem. Soc. 122 1334 (1975)CrossRefGoogle Scholar
  15. [15]
    Sunita Mishra, C Ghanshyam, Nathai Ram, Satinder Singh, R P Bajpai and R K Bedi Bull. Mater. Sci. Vol.25 No.3 231 (2002)CrossRefGoogle Scholar
  16. [16]
    O K Varghese and L K Malhotra J. Appl. Phys. 87 7457 (2000)CrossRefADSGoogle Scholar
  17. [17]
    H W Lehmann and R Widmer Thin Solid Films 27 359 (1975)CrossRefADSGoogle Scholar
  18. [18]
    A Smith, J M Laurent, D S Smith, J P Bonnet and R R Clemente Thin Solid Films 20 266 (1995)Google Scholar
  19. [19]
    J C Manifacier, J Gaslot and J P Fillard J. Phys E: Sci. Instrum. Vol.9 1002 (1976)CrossRefADSGoogle Scholar
  20. [20]
    R Swanepoel J. Phys E: Sci. Instrum. Vol.17 896 (1984)CrossRefADSGoogle Scholar
  21. [21]
    H El-Zahed, A El-Korashy and M Abdul Rahman Vacuum 68 19 (2003)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2010

Authors and Affiliations

  1. 1.Department of PhysicsManipur UniversityImphalIndia

Personalised recommendations