Indian Journal of Physics

, Volume 84, Issue 7, pp 789–794 | Cite as

Large diameter MWNTs growth on iron-sprayed catalyst by CCVD method under atmospheric pressure

  • A. A. Hosseini
  • F. Taleshi


In this work, we have synthesized large diameter multi-walled carbon nanotubes (MWNTs), by simple catalyst chemical vapor deposition (CCVD). Fe powder was spread on quartz substrate as a catalyst by a simple method and then heated under Ar atmosphere. Carbon’s products can be synthesized by the decomposition of ethylene gas and deposition of carbon atoms on the Fe catalyst particles in Ar atmosphere at 930°C. XRD pattern, SEM and TEM images were used to investigate the characteristics, morphology and structure of carbon’s products.


Carbon Nanotube MWNTs CCVD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R Satio, G Dresselhaus and M S Dresselhaus Physical Properties of Carbon Nanotubes (London: Imperial College Press) (1998)Google Scholar
  2. [2]
    H M Cheng, S F Li, G Pan, H Y Pan, L L He and X Sun Appl. Phys. Lett. 72 32824 (1998)Google Scholar
  3. [3]
    A C Dupuis Progress in Materials Science 50 929 (2005)CrossRefGoogle Scholar
  4. [4]
    A Fonseca, K Hernadi, J B Nagy, D Bernaerts and A A Lucas J. Mol. Catal. A: Chem. 107 159 (1996)CrossRefGoogle Scholar
  5. [5]
    K Hernadi, A A Fonsec, J B Nagy, A Siska and I Kiricsi Appl. Catal. A199 245 (2000)Google Scholar
  6. [6]
    C Klinke, J M Bonard and K Kern Surf. Sci. 492 195 (2001)CrossRefADSGoogle Scholar
  7. [7]
    J Kong, A M Cassel and H Dai Chem. Phys. Lett. 292 567 (1998)CrossRefADSGoogle Scholar
  8. [8]
    R T K Baker Carbon 27 31523 (1989)CrossRefGoogle Scholar
  9. [9]
    A M Cassel, A Raymake, J Kong and H Dai J. Phys. Chem. B103 648 (1999)Google Scholar
  10. [10]
    S Zhu, C H Su, S L Lehoczky, I Muntele and D Ila Diamond and Related Materials 12 1825 (2003)CrossRefGoogle Scholar
  11. [11]
    H Ago, K Nakamura, S Imamura and M Tsuji Chem. Phys. Lett. 391 308 (2004)CrossRefADSGoogle Scholar
  12. [12]
    J B Bai Materials Lett. 57 2629 (2003)CrossRefGoogle Scholar
  13. [13]
    Y M Wong, S Wei, W P Kang, J L Davidson, W Hofmeister, J H Huang and Y Cui Diamond and Related Materials. 13 2105 (2004)CrossRefGoogle Scholar
  14. [14]
    Y Murakami, Y Miyauchi, S Chiashi and S Maruyama Chem. Phys. Lett. 374 53 (2003)CrossRefADSGoogle Scholar
  15. [15]
    S C Lyu, B C Liu, C J Lee, H K Kang, C W Yang and C Y Park Chem. Materials 15 3951 (2003)CrossRefGoogle Scholar
  16. [17]
    Y Yao, L K L Falk, R E Morjan, O A Nerushev and E E B Campbell Carbon 45 2065 (2007)CrossRefGoogle Scholar
  17. [16]
    D C Lee, F C Mikulec and B A Korgel J. Am. Chem. Soc. 126 4951 (2004)CrossRefGoogle Scholar
  18. [18]
    E Terrado, M Redrado, E Muoz, W K Maser, A M Benito and M T Martinez Diamond Related Materials 15 1059 (2006)CrossRefGoogle Scholar
  19. [19]
    M Audier, A Oberlin and M Coulon J. Cryst. Growth 55 549 (1981)CrossRefADSGoogle Scholar
  20. [20]
    Y Shibuta and S Maruyama Chem. Phys. Lett. 382 381 (2003)CrossRefADSGoogle Scholar
  21. [21]
    A K M Fazle, Kibria, Y H Mo, K S Nahma and M J Kim Carbon 40 1241 (2002)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2010

Authors and Affiliations

  • A. A. Hosseini
    • 1
  • F. Taleshi
    • 1
  1. 1.Nanotechnology Laboratory, Department of PhysicsMazandaran UniversityBabolsarIran

Personalised recommendations