Skip to main content
Log in

Comparison of structure factors and pair correlation functions obtained using coulomb attractive potential and screened coulomb potential for the suspended macroions

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structure factors and pair correlation functions have been calculated for the macroions suspended in water using coulomb attractive potential (CAP) and the results have been compared well with the results obtained from the RMSA and MMSA using screened coulomb potential (SCP). Differences among the values of compressibility in the limit of zero momentum transfer, excess energy per macroion and coordination number for both the potentials have been reported. Liquid like ordering of the FCC type has been obtained using both CAP as well as SCP potentials between suspended macroions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J C Brown, P N Pusey, J W Goodwin and R H Ottewill J. Phys. 8 664 (1975)

    ADS  Google Scholar 

  2. J B Hayter Physics of amphiphiles: Mecelles, vesicles and microemulsions (eds.) V Degiorgio and M Corti (Amsterdam: North Holland) (1985)

    Google Scholar 

  3. A K van Helden, J W Jansen and A Vrij J. Colld. Interface Sci. 81 354 (1981)

    Article  Google Scholar 

  4. S Alexander, P M Chaikin, P Grant, G J Morales, P Pincus and D Hone J. Chem. Phys. 80 5776 (1984)

    Article  ADS  Google Scholar 

  5. E J W Verwey and J Th G Overbeek Theory of the stability of lyophobic colloids (Amsterdam: Elsevier) (1948)

    Google Scholar 

  6. J B Hayter and J Penfold Mol. Phys. 57 109 (1981)

    Article  ADS  Google Scholar 

  7. G Pastore, C Nappi, U DeAngelis and A Forlani Phys. Lett. A78 75 (1980)

    ADS  Google Scholar 

  8. R K Pandey and D N Tripahi J. Collds. and Surfs. A19 217 (2001)

    Article  Google Scholar 

  9. R K Pandey and D N Tripahi Pramana-J. Phys. 39 589 (1992)

    Article  ADS  Google Scholar 

  10. R K Pandey and D N Tripahi Pramana-J. Phys. 44 1 (1995)

    Article  ADS  Google Scholar 

  11. W Hartl and H Versmold J. Chem. Phys. 81 2507 (1984)

    Article  ADS  Google Scholar 

  12. B D Aguanno and R Klein J. Chem. Soc. Faraday Trans. 86 1 (1990); ibid. 87 379 (1991)

    Article  Google Scholar 

  13. I Sogami Phys. Lett. A96 199 (1983)

    ADS  Google Scholar 

  14. I Sogami and N Ise J. Chem. Phys. 81 6320 (1984)

    Article  ADS  Google Scholar 

  15. J Th G Overbeek J. Chem. Phys. 87 4406 (1987)

    Article  ADS  Google Scholar 

  16. J Th G Overbeek Mol. Phys. 80 4406 (1993)

    Article  Google Scholar 

  17. J Belloni J. Phys. Condens. Matter 12 R549 (2000)

    Article  ADS  Google Scholar 

  18. M V Smalley Mol. Phys. 71 1251 (1990)

    Article  ADS  Google Scholar 

  19. M V Smalley and I Sogami Mol. Phys. 85 685 (1994)

    Google Scholar 

  20. B V R Tata, A K Sood and R Kesavamoorthy Pramana-J. Phys. 34 23 (1990)

    Article  ADS  Google Scholar 

  21. M Yasutomi and M Ginoza J. Phys. Condens. Matter 12 L605 (2000)

    Article  ADS  Google Scholar 

  22. L S Ornstein and F Zernike Proc. Sect. Sci. K. ned Akad. Wet. 17 793 (1914)

    ADS  Google Scholar 

  23. J L Lebowitz and J K Percus Phys. Rev. 144 251 (1966)

    Article  ADS  Google Scholar 

  24. R J Baxter J. Chem. Phys. 52 4559 (1970)

    Article  ADS  Google Scholar 

  25. R K Pandey and D N Tripahi J. Phys. Soc. Jpn. 73 1748 (2004)

    Article  MATH  ADS  Google Scholar 

  26. R G Palmer and J D Weeks J. Chem. Phys. 58 4171 (1973)

    Article  ADS  Google Scholar 

  27. R K Pandey Ph D Thesis (B H U: Varanasi) (1998)

  28. J P Hansen and I R McDonald Theory of simple liquids (London: Academic) (1986)

    Google Scholar 

  29. B V R Tata, R Kesavamoorthy and A K Arora Mol. Phys. 57 369 (1986)

    Article  ADS  Google Scholar 

  30. J B Hayter and J P Hansen The structure factor of charged colloidal dispersion at any density (Institute Lave-Langevin Report) (1982)

  31. J B Hayter A program for fast bi-directional transform between g(r) and S(Q) (Institute Lave-Langevin Report) (1979)

  32. J P Hansen and L Verlet Phys. Rev. 184 151 (1969)

    Article  ADS  Google Scholar 

  33. D P Riley and G Oster Disc. Faraday Soc. 11 107 (1951)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, R.K., Tripathi, D.N. Comparison of structure factors and pair correlation functions obtained using coulomb attractive potential and screened coulomb potential for the suspended macroions. Indian J Phys 84, 397–404 (2010). https://doi.org/10.1007/s12648-010-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-010-0024-0

Keywords

Navigation