Indian Journal of Physics

, Volume 83, Issue 8, pp 1109–1115 | Cite as

Stopping power contribution due to target and projectile excitation/ionization: a comparative study

  • Lakhwant Singh
  • Mohan Singh
  • Bikram Singh
  • Navjeet Kaur
Article

Abstract

A comparative study of stopping power codes for different ions in compounds has been made by comparing the computed stopping power values using different codes with the corresponding experimental data. Two computer codes, semiempirical SRIM2006.02 and theoretical CasP3.2 have been used to evaluate and compare the stopping powers of different compounds for protons (125 KeV), helium (500 KeV) and lithium ion (175 KeV) projectiles. The energy behaviour of stopping power of various compounds for helium ion in the energy range (0.3–2.0 MeV) has been studied. The merits and demerits of the adopted formulations are highlighted. It has been observed that the calculation based on SRIM2006.02 provides the best agreement with the experimental data as compared to CasP3.2 code. The stopping power contribution due to target and projectile excitation/ionization at low energies has been evaluated and discussed with reference to CasP3.2 code. From these comparative studies it has been concluded that the target and projectile excitation-ionization increases the stopping power (>20%) at lower energies.

Keywords

Stopping power stopping power codes target and projectile excitation/ionization 

PACS No.

34.50.Bw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J F Ziegler and J M Manoyan Nucl. Instrum. Methods B35 215 (1988)ADSGoogle Scholar
  2. [2]
    S P Ahlsn Rev. Mod. Phys. 52 121 (1980)CrossRefADSGoogle Scholar
  3. [3]
    E V Benton and R P Henke Nucl. Instrum. Methods 67 87 (1969)CrossRefADSGoogle Scholar
  4. [4]
    G Schiwietz and P L Grande Radiat. Eff. Defects Solids 130/131 137 (1994)CrossRefGoogle Scholar
  5. [5]
    P Sigmund and A Schinner Nucl Instrum. Methods B195 64 (2002)ADSGoogle Scholar
  6. [6]
    N R Arista Nucl. Instrum. Methods B195 91 (2002)ADSGoogle Scholar
  7. [7]
    ICRU Report 73 Journal of the ICRU 5 No. 1 (Oxford University Press) (2005)Google Scholar
  8. [8]
    P Sigmund Ion Beam Science: Solved and Unsolved Problems (ed.) P Sigmund (Invited lectures presented at a symposium arranged by the Royal Danish Academy of Sciences and Letters, Copenhagan, 1–5 May) (2006)Google Scholar
  9. [9]
    H H Andersen and J F Ziegler Hydrogen of the stopping and ranges of ions in matter (New York: Pergamon) Vol. d3 (1977)Google Scholar
  10. [10]
    M J Berger and H Bichsel BEST, BEthe STopping Power program (diskette) (1994)Google Scholar
  11. [11]
    P L Grande and G Schiwietz Phys. Rev. A58 3796 (1998)ADSGoogle Scholar
  12. [12]
    G Schiwietz and P L Grande Nucl. Instrum. Methods B153 1 (1999)ADSGoogle Scholar
  13. [13]
    G M Azevedo, P L Grande and G Schiwietz Nucl. Instrum. Methods B164–165 203 (2000)Google Scholar
  14. [14]
    P L Grande and G Schiwietz CasP3.2 (2007)Google Scholar
  15. [15]
    ICRU Report 49 (Bethesda, MD: USA) (1993)Google Scholar
  16. [16]
  17. [17]
    J F Janni Atomic Data Nucl. Data Tables 27 147 (1982)CrossRefADSGoogle Scholar
  18. [18]
    G Konac, Ch Klatt and S Kalbitzer Nucl. Instrum. Methods B146 106 (1998)ADSGoogle Scholar
  19. [19]
    L C Northcliffe and R F Schilling Nucl. Data Tables A7 233 (1970)CrossRefADSGoogle Scholar
  20. [20]
    H Paul, D Semrad and A Seilinger Nucl. Instrum. Methods B61 261 (1991)ADSGoogle Scholar
  21. [21]
    Erratum to [19], H Paul, D Semrad and A Seilinger Nucl. Instrum. Methods B74 460 (1993)ADSGoogle Scholar
  22. [22]
    P Sigmund and A Schinner Nucl. Instrum. Methods B193 49 (2002)ADSGoogle Scholar
  23. [23]
    J F Ziegler Helium: stopping power and ranges in all elemental matter, of The Stopping and Ranges of Ions in Matter (New York: Pergamon) Vol. 4 (1977)Google Scholar
  24. [24]
    J F Ziegler, J P Biersack and U Littmark The Stopping and Range of Ions in Solids, of The Stopping and Ranges of Ions in Matter (New York: Pergamon) Vol. 1 (1985)Google Scholar
  25. [25]
    J F Ziegler SRIM-2006 Available on www.srim.org (2006)Google Scholar
  26. [26]
    S K Sharma, S Kumar and A P Sharma Nucl. Tracks Radiat. Meas. 22 81 (1993)CrossRefGoogle Scholar
  27. [27]
    S K Sharma, S Kumar and A P Sharma Appl. Radiat. Isot. 46 1345 (1995)CrossRefGoogle Scholar
  28. [28]
    S K Sharma, S Kumar, J S Yadav and A P Sharma Appl. Radiat. Isot. 46 39 (1995)CrossRefGoogle Scholar
  29. [29]
    G S Randhawa and H S Virk Radiat. Meas. 26 541 (1996)CrossRefGoogle Scholar
  30. [30]
    S Kumar, S K Sharma, N Nath, V Hari Kumar, A P Pathak, S K Hui, D Kabiraj and D K Avasthi Vacuum 48 1027 (1997)CrossRefGoogle Scholar
  31. [31]
    P K Diwan, S Kumar, G Singh and L Singh Radiat. Meas. 33 193 (2001)CrossRefGoogle Scholar
  32. [32]
    M Singh and L Singh Rad. Eff. Def solids 163 605 (2008)CrossRefGoogle Scholar
  33. [33]
    J F Ziegler Nucl. Instrum. Methods B219 1027 (2004)ADSGoogle Scholar
  34. [34]
    S Mukherji and A Nayak Nucl. Instrum. Methods 159 421(1979)CrossRefADSGoogle Scholar
  35. [35]
    F Hubert, R Bimbot and H Gauvin Nucl. Instrum. Methods B36 357(1989)ADSGoogle Scholar
  36. [36]
    CasP3.l Available from: http://www.hmi.de/people/schiwietz/casp.html (2004)
  37. [37]
    MSTAR 3.12, Available from: http://www.exphys.unilinz.ac.at/ Stopping (2004)
  38. [38]
    H K Reynolds, D N F Dunbar, W A Wenzel and W Whaling Phys. Rev. 92 742 (1953)CrossRefADSGoogle Scholar
  39. [39]
    J T Park and E J Zimmerman Phys. Rev. 131 1611 (1963)CrossRefADSGoogle Scholar
  40. [40]
    C A Sautter, D Powers and E K L Chau Phys. Rev. A140 490 (1965)CrossRefGoogle Scholar
  41. [41]
    J Kloppenburg and A Flammersfeld Z Phys. 196 429 (1966)ADSGoogle Scholar
  42. [42]
    P D Bourland, W K Chu and D Powers Phys. Rev. 3625 (1971)Google Scholar
  43. [43]
    D Powers, W K Chu, R J Robinson and A S Lodhi Phys. Rev. A6 1425 (1972)ADSGoogle Scholar
  44. [44]
    A S Lodhi and D Powers Phys. Rev. A10 2131 (1974)ADSGoogle Scholar
  45. [45]
    S Matteson, D Powers and E K L Chau Phys. Rev. A15 856 (1977)ADSGoogle Scholar
  46. [46]
    E K L Chau, R B Brown, A S Lodhi, D Powers, S Matteson and S R Eisenbarth Phys. Rev. A16 1407 (1977)ADSGoogle Scholar
  47. [47]
    E K L Chau, D Powers, A S Lodhi and R B Brown J. Appl. Phys. 49 2346 (1978)CrossRefADSGoogle Scholar
  48. [48]
    E K L Chau and D Powers J. Appl. Phys. 49 2611 (1979)CrossRefADSGoogle Scholar
  49. [49]
    R B Biown and D Powers J. Appl. Phys. 50 50 (1979)Google Scholar
  50. [50]
    R Kreutz, W Neuwirth and W Pietsch Phys. Rev. A22 2598 (1980)ADSGoogle Scholar
  51. [51]
    D I Thwaites Phys. Med. Biol. 25 865 (1980)CrossRefGoogle Scholar
  52. [52]
    H G Olson and D Powers J. Appl. Phys. 52 564 (1981)CrossRefADSGoogle Scholar
  53. [53]
    D I Thwaites Phys. Med. Biol. 26 71 (1981)CrossRefGoogle Scholar
  54. [54]
    D I Thwaites Phys. Med. Biol. 27 565 (1982)CrossRefGoogle Scholar
  55. [55]
    D Powers, H G Olson and R Gowda J. Appl. Phys. 55 1279 (1984)CrossRefADSGoogle Scholar
  56. [56]
    G Both, K Lohmer, W Neuwirth and R Schmidt Radiat. Res. 101 60 (1985)CrossRefGoogle Scholar
  57. [57]
    G Reiter, H Baumgart, N Kniest, E Pfoff and G Clausnitzer Nucl. Instrum. Methods B27 287 (1987)ADSGoogle Scholar
  58. [58]
    J F Ziegler J. Appl. Phys. 85 1249 (1999)CrossRefADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2009

Authors and Affiliations

  • Lakhwant Singh
    • 1
  • Mohan Singh
    • 1
  • Bikram Singh
    • 1
  • Navjeet Kaur
    • 1
  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations