Skip to main content
Log in

Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order 1/k 2, where k is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Altemus et al. Phys. Rev. Lett. 44 965 (1980)

    Article  ADS  Google Scholar 

  2. M Deady et al. Phys. Rev. C28 8631 (1983)

    Google Scholar 

  3. A Hotta et al. Phys. Rev. C30 87 (1984)

    ADS  Google Scholar 

  4. M Deady et al. Phys. Rev. C33 1897 (1986)

    ADS  Google Scholar 

  5. C C Blatchley et al. Phys. Rev. C34 1243 (1986)

    ADS  Google Scholar 

  6. S A Dytman et al. Phys. Rev. C38 800 (1986)

    ADS  Google Scholar 

  7. K Dow et al. Phys. Rev. Lett. 61 1706 (1988)

    Article  ADS  Google Scholar 

  8. T C Yates et al. Phys. Lett. B312 382 (1993)

    ADS  Google Scholar 

  9. C Williamson et al. Phys. Rev. C56 3152 (1997)

    ADS  Google Scholar 

  10. P Barreau et al. Nucl. Phys. Rev. A402 515 (1983)

    Article  ADS  Google Scholar 

  11. Z-E Meziani et al. Phys. Rev. Lett. 52 2130 (1984)

    Article  ADS  Google Scholar 

  12. Z-E Meziani et al. Phys. Rev. Lett. 54 1233 (1985)

    Article  ADS  Google Scholar 

  13. C Marchand et al. Phys. Lett. B153 29 (1985)

    ADS  Google Scholar 

  14. A Zghiche et al. Nucl. Phys. A572 513 (1994)

    ADS  Google Scholar 

  15. P Guéye et al. Phys. Rev. C60 044308 (1999)

  16. D T Baran et al. Phys. Rev. Lett. 61 400 (1988)

    Article  ADS  Google Scholar 

  17. J P Chen et al. Phys. Rev. Lett. 66 1283 (1991)

    Article  ADS  Google Scholar 

  18. Z-E Meziani et al. Phys. Rev. Lett. 69 41 (1992)

    Article  ADS  Google Scholar 

  19. Yanhe Jin, D S Onley and L E Wright Phys. Rev. C45 1311, 1333 (1992); ibid 50 168 (1994)

    ADS  Google Scholar 

  20. J M Udias. et al. Phys. Rev. C48 (1993)

  21. J M Udiás et al. Phys. Rev. C51 3246 (1995)

    ADS  Google Scholar 

  22. M Traini Nucl. Phys. A694 325 (2001)

    ADS  Google Scholar 

  23. M Traini S Turck-Chiéze and A Zghiche Phys. Rev. C38 2799 (1988)

    ADS  Google Scholar 

  24. D R Yennie, F L Boos (Jr.) and D G Ravenhall Phys. Rev. 137 882 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. R Rosenfeler Ann. Phys. (N Y) 128 188 (1980)

    Article  ADS  Google Scholar 

  26. A Aste, K Hencken, J Jourdan, I Sick and D Trautmann Nucl. Phys. Rev. A743 259 (2004)

    Article  ADS  Google Scholar 

  27. A Aste and J Jourdan Euro. Phys. Lett. 67 753 (2004)

    Article  ADS  Google Scholar 

  28. J Morgenstern and Z-E Meziani Phys. Lett. B515 269 (2001)

    ADS  Google Scholar 

  29. O Benhar, D Day and I Sick nucl-ex/0603029

  30. J A Tjon and S J Wallace Phys. Rev. C74 064602 (2006)

  31. D S Saxon and L I Schiff Nuovo Cimento. 6 614 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. R L Sugar and R Blankenbeclar Phys. Rev. 183 1387 (1969)

    Article  ADS  Google Scholar 

  33. R J Glauber in Lectures in Theoretical Physics (eds.) W E Brittin et al. (New York: Interscience) (1959)

    Google Scholar 

  34. A Baker Phys. Rev. D6 3462 (1972); ibid 8 1937 (1973)

    ADS  Google Scholar 

  35. S J Wallace Ann Phys. (NY) 78, 190 (1973); Phys. Rev. D8 1934 (1973)

    Article  ADS  Google Scholar 

  36. S J Wallace and J L Friar Phys. Rev. C29 956 (1984)

    ADS  Google Scholar 

  37. S J Wallace and J A Tjon (to be published)

  38. H de Vries, C W de Jager and C de Vries Atomic Data and Nucl. Data Tables 36 495 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tjon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjon, J.A., Wallace, S.J. Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering. Indian J Phys 83, 693–711 (2009). https://doi.org/10.1007/s12648-009-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-009-0085-0

Keywords

PACS Nos

Navigation