Skip to main content
Log in

Measurement of uranium and its isotopes at trace levels in environmental samples using mass spectrometry

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Actinides have widely entered the environment as a result of nuclear accidents and atmospheric weapon testing. These radionuclides, especially uranium, are outstanding radioactive pollutants, due to their high radiotoxicity and long half-lives. In addition to this, since depleted uranium (DU) has been used in the Balkan conflict in 1999, there has been a concern about the possible consequences of its use for the people and environment. Therefore, accurate, precise and simple determination methods are necessary in order to evaluate the human dose and the concentration and effects of these nuclides in the environment. The principal isotopes of uranium e.g. 235U and 238U are of primordial origin and 234U present in radioactive equilibrium with 238U. 236U occurs in nature at ultra trace concentrations with a 236U: 238U atom ratio of 10−14. Concentrations of uranium in soil samples were determined using inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratios of uranium were measured using a thermal ionisation mass spectrometer. Radioactive dis-equilibrium of 234/238U, depletion of 235/238U and significant evidence of 236U/238U were noticed in soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNSCEAR Sources and effects of Ionizing Radiation, Report to the General Assembly, Vol. I. (New York: United Nations) (2000)

    Google Scholar 

  2. S R Taylor and S M McLennan Continental Crust: Its Composition and Evolution (London, U K: Blackwell Scientific Publishers) (1985)

    Google Scholar 

  3. W Burkart Handbook on the Toxicity of the Inorganic Compounds (eds) H Sigel and H G Seiler (New York: M Dekker) p805 (1988)

    Google Scholar 

  4. C R Cothern and W L Lappenbusch Health Phys. 45 89(1983)

    Google Scholar 

  5. M I Litaor J. Environ. Qual. 24 314 (1995)

    Article  Google Scholar 

  6. M E Ketterer, W C Wetzel, R R Layman, G Matisoff and E C Bonniwell Environ. Sci. Technol. 54 966 (2000)

    Article  Google Scholar 

  7. A Bleise, P R Dansei and W Burkart J. Environ. Radioactivity 64 93 (2003)

    Article  Google Scholar 

  8. M Ivanovich and R S Harmon Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (Oxford: Clarendon Press) (1992)

    Google Scholar 

  9. S F Boulyga, J S Baker, J L Matusevitch and H J Dietze Int. J. Mass Spectrom. 203 143 (2000)

    Article  Google Scholar 

  10. M Yamamoto, K Shiraishi, K Komura, and K Ueno J. Radioanal. Nucl. Chem. 185 183 (1994)

    Article  Google Scholar 

  11. O J Marsden, F R Livens, J P Day, L K Fifield and P S Goodall Analyst 126 633 (2001)

    Article  ADS  Google Scholar 

  12. T C Chu and J J Wang Appl. Radiat. Isotopes 48 3619 (1997)

    Article  Google Scholar 

  13. J H Chen and G J Wasserburg Anal. Chem. 53 2060 (1981)

    Article  Google Scholar 

  14. A S Cohen, N S Belshaw and R K O’Nions Int. J. Mass Spectrom. Ion Processes 116 71 (1992)

    Article  ADS  Google Scholar 

  15. K L Ramakumar, S Jeykumar, R M Rao, L Gnanayyan and H C Jain J. Radioanal. Nucl. Chem. 190 121 (1995)

    Article  Google Scholar 

  16. X Luo, M Rehkamper, D C Lee and A Haliday Int. J. Mass Spectrom. Ion Processes 171 105 (1997)

    Article  ADS  Google Scholar 

  17. S Ritcher, A Alonso, W De Bolle, R Wellum and P D P Taylor Int. J. Mass Spectrom. 193 9 (1999)

    Article  Google Scholar 

  18. S K Sahoo and A Masuda Proc. Jpn. Acad. 76 151 (2000)

    Article  Google Scholar 

  19. S K Sahoo, H Yonehara, K Kurotaki, K Shiraishi, V Ramzaev and A Barkovski J. Radioanal. Nucl. Chem. 247 341 (2001)

    Article  Google Scholar 

  20. R N Taylor, I W Croudace, P E Warwick and S J Dee Chem. Geol. 144 73 (1998)

    Article  Google Scholar 

  21. P Goodall and C Lythgoe Analyst 124 263 (1999)

    Article  ADS  Google Scholar 

  22. Z A Palacz, P A Freedman and A J Walder Chem. Geol. 101 157 (1992)

    Google Scholar 

  23. K H Wedepohl Geochim. Cosmochim. Acta 59 1217 (1995)

    Article  ADS  Google Scholar 

  24. J P McLaughlin, L L Vintro, K J Smith, P I Mitchell and Z S Zunic J. Environ. Radioactivity 64 155 (2003)

    Article  Google Scholar 

  25. P R Danesi, A Bleise, W Burkart, T Cabianca, M J Campbell, M Makarewicz, J Moreno, C Tuniz and M Hotchkis J. Environ. Radioactivity 64 121 (2003)

    Article  Google Scholar 

  26. S K Sahoo, K Fujimoto, I Celikovic, P Ujic and Z S Zunic Nucl. Technol. Radiat. Prot. 19 26 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, S.K. Measurement of uranium and its isotopes at trace levels in environmental samples using mass spectrometry. Indian J Phys 83, 787–797 (2009). https://doi.org/10.1007/s12648-009-0046-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-009-0046-7

Keywords

PACS Nos.

Navigation