Skip to main content
Log in

Development and Uncertainty Assessment of Low-Cost Portable EMG Acquisition Module

MAPAN Aims and scope Submit manuscript

Abstract

Surface electromyography is an important and widely used biomedical measurement technique. In biomedical engineering, obtaining high-quality EMG data and processing it in real-time is challenging. Their calibration repeatability and reliability, on the other hand, remain in discussion. Furthermore, the metrological elements of EMG systems have not yet been studied. In this research work, a portable EMG acquisition module has been developed, and the uncertainty of two EMG characteristics for four everyday hand motions has been investigated. Furthermore, an inter-instrument comparison has been carried out in a controlled environment. For multiple trials, the result has been estimated for 10 people. While designing the experiment, two major uncertainty factors, muscle selection/electrode placement and subjective analysis, have been taken into consideration. The developed system's inter-instrument performance has been found to be similar to that of the existing system (p-value > 0.05). The total uncertainty of the developed system has been found to be in the range of 0.0106–0.0196% (p-value > 0.05) for RMS and 0.1001–0.2084% (p-value > 0.05) for MF. The existing commercial system, in contrast, exhibited uncertainty in the range of 0.0171–0.0359% (p-value > 0.05) for RMS and 0.1010–0.2088% (p-value > 0.05) for MF. The developed EMG acquisition system's performance and cost-effectiveness validate its utility and acceptability for low-cost product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. R. Gupta and R. Agarwal, Continuous human locomotion identification for lower limb prosthesis control. CSI Trans. ICT, 6(1) (2018) 17–31. https://doi.org/10.1007/s40012-017-0178-4.

    Article  Google Scholar 

  2. K. Veer, R. Agaral and R. Agarwal, Wavelet denoising and evaluation of electromyogram signal using statistical algorithm. Int. J. Biomed. Eng. Technol., 16(4) (2014) 293–305. https://doi.org/10.1504/IJBET.2014.066223.

    Article  Google Scholar 

  3. H.S. Ryait, A.S. Arora and R. Agarwal, Interpretations of wrist/grip operations from SEMG signals at different locations on arm. IEEE Trans. Biomed. Circuits Syst., 4(2) (2010) 101–111. https://doi.org/10.1109/TBCAS.2009.2037604.

    Article  Google Scholar 

  4. A. Phinyomark, P. Phukpattaranont and C. Limsakul, Feature reduction and selection for EMG signal classification. Expert Syst. Appl., 39(8) (2012) 7420–7431. https://doi.org/10.1016/j.eswa.2012.01.102.

    Article  Google Scholar 

  5. S.M. Khan, A.A. Khan and O. Farooq, Selection of features and classifiers for EMG-EEG-Based upper limb assistive devices—a review. IEEE Rev. Biomed. Eng., 13 (2020) 248–260. https://doi.org/10.1109/RBME.2019.2950897.

    Article  Google Scholar 

  6. P. Geethanjali and K.K. Ray, A Low-Cost Real-Time Research Platform for EMG Pattern Recognition-Based Prosthetic Hand. IEEE/ASME Trans. MECHATRONICS, 20(4) (2015) 1948–1955.

    Article  Google Scholar 

  7. K. Veer, Interpretation of surface electromyograms to characterize arm movement. Instrum. Sci. Technol., 42(5) (2014) 513–521. https://doi.org/10.1080/10739149.2014.913178.

    Article  Google Scholar 

  8. C. Castellini and P. Van Der Smagt, Surface EMG in advanced hand prosthetics. Biol. Cybern., 100(1) (2009) 35–47. https://doi.org/10.1007/s00422-008-0278-1.

    Article  Google Scholar 

  9. W. Guo, X. Sheng, H. Liu and X. Zhu, Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation. IEEE Sens. J., 16(2) (2016) 447–456. https://doi.org/10.1109/JSEN.2015.2459067.

    Article  ADS  Google Scholar 

  10. I.H. de Oliveira and A. Balbinot, Portable electrocardiograph based on the integrated circuit ADS1294 using an android application as interface. Health Technol. (Berl), 5(2) (2015) 147–154. https://doi.org/10.1007/s12553-015-0113-3.

    Article  Google Scholar 

  11. M. Lv, G.F. Ou and Y. Ma, Design and implementation of a wireless iidentification device. J. Phys. Conf. Ser., 2005(1) (2021) 832–840. https://doi.org/10.1088/1742-6596/2005/1/012114.

    Article  Google Scholar 

  12. H. Huang, P. Zhou, G. Li and T.A. Kuiken, An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans. Neural Syst. Rehabil. Eng., 16(1) (2008) 37–45. https://doi.org/10.1109/TNSRE.2007.910282.

    Article  Google Scholar 

  13. Y.H. Hsueh, C. Yin and Y.H. Chen, Hardware system for real-time emg signal acquisition and separation processing during electrical stimulation. J. Med. Syst., 39(9) (2015) 1–8. https://doi.org/10.1007/s10916-015-0267-6.

    Article  Google Scholar 

  14. R. Kinugasa and S. Kubo, Development of consumer-friendly surface electromyography system for muscle fatigue detection. IEEE Access, 11(January) (2023) 6394–6403. https://doi.org/10.1109/ACCESS.2023.3237557.

    Article  Google Scholar 

  15. J. Park, J. Berman, A. Dodson, Y. Liu, M. Armstrong, H. Huang, D. Kaber, J. Ruiz and M. Zahabi, Assessing workload in using electromyography (EMG)-based prostheses. Ergonomics (2023). https://doi.org/10.1080/00140139.2023.2221413.

    Article  Google Scholar 

  16. V. Gohel and N. Mehendale, Review on electromyography signal acquisition and processing. Biophys. Rev., 12(6) (2020) 1361–1367. https://doi.org/10.1007/s12551-020-00770-w.

    Article  Google Scholar 

  17. P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur and X. Savatier, A study of vicon system positioning performance. Sensors (Switzerland), 17(7) (2017) 1–18. https://doi.org/10.3390/s17071591.

    Article  Google Scholar 

  18. P. Puchaud, C. Sauret, A. Muller, N. Bideau, G. Dumont, H. Pillet and C. Pontonnier, Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data. Comput. Methods Biomech. Biomed. Engin., 23(3) (2020) 114–125. https://doi.org/10.1080/10255842.2019.1705798.

    Article  Google Scholar 

  19. S. Crea, M. Donati, S. Marco, M. De Rossi and C.M. Oddo, A wireless flexible sensorized insole for gait analysis. Sensors, 14 (2014) 1073–1093. https://doi.org/10.3390/s140101073.

    Article  ADS  Google Scholar 

  20. L.P. Maletsky, J. Sun and N.A. Morton, Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J. Biomech., 40(3) (2007) 682–685. https://doi.org/10.1016/j.jbiomech.2006.01.017.

    Article  Google Scholar 

  21. “MotionLabSystem.pdf.” http://www.motion-labs.com/ (accessed Oct. 12, 2022).

  22. “BTS.pdf.” https://www.btsbioengineering.com/ (accessed Oct. 12, 2022).

  23. C.J. De Luca, Surface electromyography: detection and recording. Science (2002). https://doi.org/10.1126/science.196.4292.879.

    Article  Google Scholar 

  24. H. M. Desa, M. S. Zuber, R. Jailani, and N. M. Tahir, “Development of EMG Circuit for Detection of Leg Movement,” pp. 46–51, 2016.

  25. A. Kaur, A. Kumar and R. Agarwal, Wavelet based machine learning technique to classify the different shoulder movement of upper limb amputee. J. Biomimetics Biomater. Biomed. Eng., 31 (2017) 32–43. https://doi.org/10.4028/www.scientific.net/JBBBE.31.32.

    Article  Google Scholar 

  26. R. Gupta and R. Agarwal, Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control. Arab. J. Sci. Eng., 43(12) (2018) 7817–7835. https://doi.org/10.1007/s13369-018-3193-3.

    Article  Google Scholar 

  27. I.S. Dhindsa, R. Agarwal and H.S. Ryait, Principal component analysis-based muscle identification for myoelectric-controlled exoskeleton knee. J. Appl. Stat., 44(10) (2016) 1707–1720. https://doi.org/10.1080/02664763.2016.1221907.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Gupta and R. Agarwal, Single muscle surface EMGs locomotion identification module for prosthesis control. Neurophysiology, 51(3) (2019) 191–208. https://doi.org/10.1007/s11062-019-09812-w.

    Article  Google Scholar 

  29. N. Saini, S. Bhardwaj and R. Agarwal, An intelligent approach of measurement and uncertainty estimation for hidden information detection using brain signals. Mapan-J. Metrol. Soc. India, 37(1) (2022) 81–95. https://doi.org/10.1007/s12647-021-00493-7.

    Article  Google Scholar 

  30. A. Sohane and R. Agarwal, A single platform for classification and prediction using a hybrid bioinspired and deep neural network (PSO-LSTM). Mapan-J. Metrol. Soc. India, 37(1) (2022) 47–58. https://doi.org/10.1007/s12647-021-00478-6.

    Article  Google Scholar 

  31. SENIAM, “Sensors location: Recommendations for sensor locations on individual muscles,” 2016. http://seniam.org/sensor_location.htm (accessed Feb. 20, 2020).

  32. J.A. Brantley, T.P. Luu, S. Nakagome, F. Zhu and J.L. Contreras Vidal, Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground”. Sci. Data, 5 (2018) 180133. https://doi.org/10.1038/sdata.2018.133.

    Article  Google Scholar 

  33. R. Gupta and R. Agarwal, Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis. Biocybern. Biomed. Eng., 39(3) (2019) 775–788. https://doi.org/10.1016/j.bbe.2019.07.002.

    Article  Google Scholar 

  34. R. Gupta, I.S. Dhindsa and R. Agarwal, Continuous angular position estimation of human ankle during unconstrained locomotion. Biomed. Signal Process. Control, 60 (2020) 101968. https://doi.org/10.1016/j.bspc.2020.101968.

    Article  Google Scholar 

  35. S. Rab, S. Yadav, A. Zafer, A. Haleem, P.K. Dubey, J. Singh, R. Kumar, R. Sharma and L. Kumar, Least square fitting and calibration factor methods for the evaluation of measurement uncertainty using direct pressure indicating devices. Mapan-J. Metrol. Soc. India, 34(3) (2019) 305–315. https://doi.org/10.1007/s12647-019-00333-9.

    Article  Google Scholar 

  36. S.K. Jaiswal, S. Yadav and R. Agarwal, Multiple weighing based method for realizing flow. Mapan-J. Metrol. Soc. India, 30(2) (2015) 119–123. https://doi.org/10.1007/s12647-014-0122-0.

    Article  Google Scholar 

  37. J. Yen, D. Leber, and L. Pibida, Comparing Instruments, pp. 1–57, 2020, [Online]. Available: https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2106.pdf

  38. M.B.I. Raez, M.S. Hussain, F. Mohd-Yasin, M.B.I. Reaz, M.S. Hussain and F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online, 8(1) (2006) 11–35. https://doi.org/10.1251/bpo115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Dhindsa, I.S. & Agarwal, R. Development and Uncertainty Assessment of Low-Cost Portable EMG Acquisition Module. MAPAN (2023). https://doi.org/10.1007/s12647-023-00706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12647-023-00706-1

Keywords

Navigation