Skip to main content
Log in

Tribological Performance of Aluminium Metal Matrix Hybrid Composites

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The present work investigates the tribological wear characteristics (pin-on-disc) of Al6061composite that has been fabricated via stir casting route of liquid metallurgy technique with varying content of aluminium oxide(Al2O3), zirconia sand (ZrSiO4), silicon carbide (SiC) and rice husk ash (RHA) as reinforcement. The test observations can be observed and appreciated that increasing the reinforcement percentage, the properties like density and hardness increased significantly and monolithically. The dry sliding pin-on-disc (POD) wear test is performed using configuration tribometer by various parameters at 50 N load, 600 RPM, 25 min, and the test results state that composites have greater wear resistance. These tribological wear characteristics are then optimized using the L16 orthogonal array Taguchi method, where a weight loss model was created in terms of applied load, abrasive grain size, which revealed that the reinforcement’s weight per cent is the highest influencing factor. Basically, the Al6061 is comparatively soft, and as per dry sliding POD wear concern at the applications of stringers, aircraft wings, seat tracks, floor breams, fuselage of an aircraft’s, the wear resistance plays a crucial role in relative movement at contact surfaces; hence, the present work focused on developing Al6061–SiC/Al2O3/RHA/ZrSiO4 metal matrix hybrid composites with enhanced tribological and mechanical properties. Of all the mixtures, the composites having the optimum percentage of reinforcement materials showed improved properties. To do the tribological wear analysis, samples are slide against SiC abrasive grit, and the worn-out surface is then analysed using scanning electron microscope and EDS. Experimentally, it was found that applied load and sliding distance have an almost negligible effect on wear, whereas the abrasive grain size has the highest impact on wear. The predicted material loss of the hybrid composite samples was found to lie near by that of the experimentally observed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Onat, H. Akbulut and F. Yilmaz, Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method. Alloys Compd., 436 (2007) 375–382.

    Article  Google Scholar 

  2. V. Umasankar, M.A. Xavior and S. Karthikeyan, Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. Alloys Compd., 582 (2014) 380–386.

    Article  Google Scholar 

  3. S. Dikshit, V. Gurjar, R. Dasgupta, S. Chaturvedi, K.K. Pathak and A.K. Jha, Studies on cold upsetting behaviour of AA2014-based metal matrix composites, FEM simulation, and comparison with experimental results. Mater. Sci. Lett., 45 (2010) 4174–4179.

    ADS  Google Scholar 

  4. H. Abdizadeh, M. Ashuri, P. Moghadam, A. Nouribahadory and H. Baharvandi, Improvement in physical and mechanical properties of aluminium/zircon composites fabricated by powder metallurgy method. Mater. Des., 32 (2011) 4417–4423.

    Article  Google Scholar 

  5. R. Dwivedi, Performance of MMC Rotors in Dynamometer Testing. SAE Technical Paper Series, 940848. Warrendale, PA, USA.

  6. T. Miyajima and Y. Iwai, Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear, 255 (2003) 606–616.

    Article  Google Scholar 

  7. A. Mortensen and T. Wong, Infiltration of fibrous preforms by a pure metal: Part III. Capillary phenomena. Metall Mater Trans A, 21 (1990) 2257–2263.

    Article  ADS  Google Scholar 

  8. A.T. Alpas and J. Zhang, Effect of SiC particulate reinforcement on the dry sliding wear of aluminum–silicon alloys (A356). Wear, 155 (1992) 83–104.

    Article  Google Scholar 

  9. M.D. Bermudez, G. Martinez-Nicolas, F.J. Carrion, I. Martinez-Mateo, J.A. Rodriguez and E.J. Herrera, Dry and lubricated wear resistance of mechanically-alloyed aluminum-base sintered composites. Wear, 248 (2001) 178–186.

    Article  Google Scholar 

  10. J.G. Kaufman. Properties of Aluminum Alloys Tensile Creep and Fatigue Data at High and Low Temperatures. ASM International; 2002.

  11. C.S. Ramesh, A.R. Anwar Khan, N. Ravikumar and P. Savanprabhu, Prediction of wear coefficient of Al6061–TiO2 composites. Wear, 259 (2005) 602–608.

    Article  Google Scholar 

  12. G. Straffelini, F. Bonollo and A. Tiziani, Influence of matrix hardness on the sliding behavior of 20 vol% Al2O3-particulate reinforced 6061 Al metal matrix composite. Wear, 211 (1997) 192–197.

    Article  Google Scholar 

  13. S.Y. Yu, H. Ishii, K. Tohgo, Y.T. Cho and D. Diao, Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite. Wear, 213 (1997) 21–28.

    Article  Google Scholar 

  14. H.C. How and T.N. Baker, Dry sliding wear behaviour of Saffil-reinforced AA6061 composites. Wear, 210 (1997) 263–272.

    Article  Google Scholar 

  15. Y.N. Liang, Z.Y. Ma, S.Z. Li, S. Li and J. Bi, Effect of particle size on wear behaviour of SiC particulate-reinforced aluminum alloy composites. J Mater Sci Lett, 14 (1995) 114–116.

    Article  Google Scholar 

  16. S. Basavarajappa, G. Chandramohan, R. Subramanian and A. Chandrasekar, Dry sliding wear behaviour of Al2219/SiC metal matrix. Mater Sci-Poland, 24 (2006) 357–366.

    Google Scholar 

  17. S. Basavarajappa and G. Chandramohan, Wear studies on metal matrix compositesm – Taguchi approach. J Mater Sci Technol, 21 (2005) 845–850.

    Google Scholar 

  18. C.S. Ramesh and M. Safiulla, Short communication: wear behavior of hot extruded Al6061 based composites. Wear, 263 (2007) 629–635.

    Article  Google Scholar 

  19. G.V. Kumar, P.P. Panigrahy, S. Nithika, R. Pramod and C.S.P. Rao, Assessment of mechanical and tribological characteristics of Silicon Nitride reinforced aluminum metal matrix composites. Compos. Part B: Eng., 175 (2019) 107138.

    Article  Google Scholar 

  20. C.S. Ramesh, A.R.A. Khan, N. Ravikumar and P. Savanprabhu, Prediction of wear coeffcient of Al6061–TiO= composites. Wear, 259 (2005) 602–608. https://doi.org/10.1016/j.wear.2005.02.115.

    Article  Google Scholar 

  21. L.J. Yang, Wear coeffcient equation for aluminium based matrix composites against steel disc. Wear, 255 (2003) 879–892. https://doi.org/10.1016/S0043-1648(03)00191-1.

    Article  Google Scholar 

  22. D.S. Prasad and A.R. Krishna, Tribological properties of A356.2/RHA composites. J. Mater. Sci. Technol., 28 (2012) 367–372.

    Article  Google Scholar 

  23. A. Mandal, B.S. Murty and M. Chakraborty, Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear, 266 (2009) 865–872.

    Article  Google Scholar 

  24. A. Mandal, M. Chakraborty and B.S. Murty, Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear, 262 (2007) 160–166.

    Article  Google Scholar 

  25. M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan and G. Sundararajan, The effect of participate reinforcement on the sliding wear behavior of aluminum matrix composites. Metall. Trans. A, 23 (1992) 2833–2847.

    Article  Google Scholar 

  26. S. Sakthivelu, M. Meignanamoorthy, M. Ravichandran and P.P. Sethusundaram, Tribological behavior of AA7050-ZrSiO4 composites synthesized by stir casting. Mech. Mech. Eng., 23 (2019) 198–201.

    Article  Google Scholar 

  27. J. Lakshmipathy and B. Kulendran, Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. Int. J. Refractory Met. Hard Mater., 46 (2014) 137–144.

    Article  Google Scholar 

  28. R. Bauri and M.K. Surappa, Sliding wear behavior of Al–Li–SiCp composites. Wear, 265 (2008) 1756–1766.

    Article  Google Scholar 

  29. L. Jayakumar, K. Balamurugan and C. Ezhilarasan, Wear and friction behavior of 7075Al–25%SiC particle composites sliding against automobile friction material. IREME, 8 (2014) 190–196.

    Google Scholar 

  30. S. Kumar and V. Balasubramanian, Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites: a statistical analysis. Tribol Int, 43 (2010) 414–422.

    Article  Google Scholar 

  31. Onat Adem, Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method. J Alloy Compd, 489 (2010) 119–124.

    Article  Google Scholar 

  32. K. Palanikumar, Application of Taguchi and response surface methodologies for surface roughness in machining Glass fber reinforced plastics by PCD tooling. Int J Adv Manuf Technol, 36 (2008) 19–27. https://doi.org/10.1007/s00170-006-0811-0.

    Article  Google Scholar 

  33. K.K. Alaneme, B.O. Ademilua and M.O. Bodunrin, Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with Silicon carbide and bamboo leaf Ash. Tribol. Ind., 35 (2013) 25–35.

    Google Scholar 

  34. A. Baradeswaran and A.E. Perumal, Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos. Part B, 56 (2014) 464–471. https://doi.org/10.1016/j.compositesb.2013.08.013.

    Article  Google Scholar 

  35. F. Akhlaghi and A.Z. Bidaki, Influence of graphite content on the dry sliding and oil impregnated sliding wear behaviour of Al2024-graphite composites produced by in situ powder metallurgy method. Wear, 266 (2009) 37–45. https://doi.org/10.1016/j.wear.2008.05.013.

    Article  Google Scholar 

  36. Jerzy Myalski and Andrzej Posmyk, Processing of sliding hybrid composites with aluminium alloy matrix containing solid lubricants. Mater Manuf Process (2015). https://doi.org/10.1080/10426914.2015.1127940.

    Article  Google Scholar 

  37. P. Ravindran, K. Manisekar, R. Narayanasamy and P. Narayanasamy, Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram Int, 39 (2013) 1169–1182. https://doi.org/10.1016/j.ceramint.2012.07.041.

    Article  Google Scholar 

  38. H. Chi, L. Jianga, G. Chen, P. Kang, X. Lin and G. Wu, Dry sliding friction and wear behavior of (TiB2þh-BN)/2024Al composites. Mater Des, 87 (2015) 960–968. https://doi.org/10.1016/j.matdes.2015.08.088.

    Article  Google Scholar 

  39. M. Kumar, A. Megalingam Murugan, V. Baskaran, K.S. Hanumanth Ramj. Effect of sliding distance on dry sliding tribological behaviour of Aluminium Hybrid Metal Matrix Composite (AlHMMC): an alternate for automobile brake rotor: a Grey Relational approach. IMech, SAGE; 2015. Doi:https://doi.org/10.1177/1350650115602724.

  40. A. Baradeswaran, A. Elaya Perumal and Issac R. Franklin, A Statistical analysis of optimization of wear behaviour of Al–Al2O3 composites using Taguchi technique. Proced. Eng., 64 (2013) 973–982. https://doi.org/10.1016/j.proeng.2013.09.174.

    Article  Google Scholar 

  41. S.A. Alidokht, A. Abdollah-zadeh and H. Assadi, Effect of applied load on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear, 305 (2013) 291–298. https://doi.org/10.1016/j.wear.2012.11.043.

    Article  Google Scholar 

  42. G.B. Veeresh Kumar, R. Pramod, P.S. Gouda, C.S.P. Rao. Effect of tungsten carbide reinforcement on the aluminium 6061 alloy. J. Test Eval. 2017:1–32. https://doi.org/10.1520/JTE20170545.

  43. T.S. Kiran, M. Prasanna Kumar, S. Basavarajappa and B.M. Viswanatha, Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques. Mater Des, 63 (2014) 294–304. https://doi.org/10.1016/j.matdes.2014.06.007.

    Article  Google Scholar 

  44. A. Baradeswaran, S.C. Vettivel, A. Elaya Perumal, N. Selvakumar and Issac R. Franklin, Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater Des, 63 (2014) 620–632. https://doi.org/10.1016/j.matdes.2014.06.054.

    Article  Google Scholar 

  45. R. Kumar and S. Dhiman, A study of sliding wear behaviors of Al-7075 alloy and Al- 7075 hybrid composite by response surface methodology analysis. J. Mater Des., 50 (2013) 351–359. https://doi.org/10.1016/j.matdes.2013.02.038.

    Article  Google Scholar 

  46. S. Murphy and T. Savaskan, Comparative wear behavior of Zn–Al-based alloys in an automotive engine application. Wear, 98 (1984) 151–161. https://doi.org/10.1016/0043-1648(84)90224-2.

    Article  Google Scholar 

  47. T. Savaskan and S. Murphy, Mechanical properties and lubricated wear of Zn–25Albased alloys. Wear, 116 (1987) 211–224. https://doi.org/10.1016/0043-1648(87)90234-1.

    Article  Google Scholar 

  48. J. Singh, Fabrication characteristics and tribological behavior of Al/SiC/ Gr hybrid aluminum matrix composites: a review. Friction, 4 (2016) 191. https://doi.org/10.1007/s40544-016-0116-8.

    Article  Google Scholar 

  49. A. Baradeswaran and A.E. Perumal, Wear and mechanical characteristics of Al 7075/graphite composites. Compos. Part B, 56 (2014) 472–476. https://doi.org/10.1016/j.compositesb.2013.08.073.

    Article  Google Scholar 

  50. V.C. Uvaraja, N. Natarajan, I. Rajendran and K. Sivakumar, Tribological behavior of novel hybrid composite materials using Taguchi technique. J. Tribol. ASME, 135 (2013) 021101–021112. https://doi.org/10.1115/1.4023147.

    Article  Google Scholar 

  51. M. Ikegami, S. Guo and Y. Kagawa, Densification behavior and microstructure of spark plasma sintered ZrB2-based composites with SiC particles. Ceram. Int., 38 (2012) 769–774.

    Article  Google Scholar 

  52. S. Zhu, W.G. Fahrenholtz and G.E. Hilmas, Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J. Eur. Ceram. Soc., 27 (2007) 2077–2083.

    Article  Google Scholar 

  53. A. Snyder, D. Quach, J.R. Groza, T. Fisher, S. Hodson and L.A. Stanciu, Spark plasma sintering of ZrB2–SiC–ZrC ultra-high temperature ceramics at 1800 C. Mater. Sci. Eng. A, 528 (2011) 6079–6082.

    Article  Google Scholar 

  54. A.L. Chamberlain, W.G. Fahrenholtz and G.E. Hilmas, Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc., 89 (2006) 450–456.

    Article  Google Scholar 

  55. S. Guo, K. Naito and Y. Kagaw, Mechanical and physical behaviors of short pitchbased carbon fiber reinforced HfB2–SiC matrix composites. Ceram. Int., 39 (2013) 1567–1574.

    Article  Google Scholar 

  56. S. Rajesh, S. Rajakarunakaran and Pandian R. Sudhakara, Modeling and optimization of sliding specific wear and coefficient of friction of aluminum based red mud metal matrix composite using Taguchi method and response surface methodology. Mater. Phys. Mech., 15 (2012) 150–166.

    Google Scholar 

  57. https://www.isobudgets.com/expanded-uncertainty-and-coverage-factors-for-calculating-uncertainty/student-t-table-2/. Accessed online 15 May 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Nagdeve, L., Kumar, H. et al. Tribological Performance of Aluminium Metal Matrix Hybrid Composites. MAPAN 37, 845–858 (2022). https://doi.org/10.1007/s12647-022-00596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00596-9

Keywords

Navigation