Skip to main content
Log in

Bilateral Comparison of Radiation Temperature Measurements from − 20 to 1600 °C Between TUBITAK-UME (Turkey) and SASO-NMCC (Kingdom of Saudi Arabia)

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

We report the results of a bilateral comparison of radiation temperature measurements between SASO-NMCC (National Measurement and Calibration Center of Kingdom of Saudi Arabia) and TUBITAK-UME (National Metrology Institute of Turkey) over the range of the nominal target temperature from − 20 to 1600 °C. Two radiation thermometers, employed as the transfer standard instruments, were provided by the pilot laboratory TUBITAK–UME and traceable to the UME primary level radiation temperature scale approximation and realization. During the measurements each laboratory applied its own internal calibration procedures. The results of the comparison showed that all twelve pairs of temperature measurements performed by the participating laboratories are in a good agreement within declared combined standard uncertainty values. The comparison results obtained here support calibration and measurement capabilities both of UME and SASO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Preston-Thomas, The international temperature scale of 1990 (ITS-90). Metrologia, 27 (1990) 3–10.

    Article  ADS  Google Scholar 

  2. H.W. Yoon, V.B. Khromchenko, G.P. Eppeldauer, C.E. Gibson, J.T. Woodward, P.S. Shaw and K.R. Lykke, Towards high-accuracy primary spectral radiometry from 400 to 1300 K. Philos. Trans. R. Soc. A, 374 (2016) 20100045.

    Google Scholar 

  3. M.J. Martin, L. Knazovicka, D. del Campo and R. Strnad, Bilateral comparison between CMI and CEM in radiance temperature scale realization from 232 °C to 1085 °C. Int. J. Thermophys., 35 (2014) 475–484.

    ADS  Google Scholar 

  4. X. Hao, H. McEvoy, G. Machin, Z. Yuan and T. Wang, A comparison of the In, Sn, Zn and Al fixed points by radiation thermometry between NIM and NPL and verification of the NPL blackbody reference sources from 156 °C to 1000 °C. Meas. Sci. Technol., 24 (2013) 075004.

    Article  ADS  Google Scholar 

  5. T. Keawprasert, Y. Yamada and J. Ish, Pilot comparison of radiance temperature scale realization between NIMT and NMIJ. Int. J. Thermophys., 36 (2015) 315–326.

    Article  ADS  Google Scholar 

  6. B. Gutschwager, E. Theocharous, C. Monte, A. Adibekyan, M. Reiniger, N.P. Fox and J. Hollandt, Comparison of the radiation temperature scales of the PTB and the NPL in the temperature range from -57 °C to 50 °C. Meas. Sci. Technol., 24 (2013) 065002.

    Article  ADS  Google Scholar 

  7. Bilateral Comparison on Radiation Thermometer Calibration Between TUBITAK UME and SASO NMCC, UME-SI-D3–2.16.6 (2019).

  8. ISO/IEC 17043 Conformity assessment -General requirements for proficiency testing (2010).

  9. EA 4/02 Expression of the Uncertainty of Measurement in Calibration, Rev 02 (2013).

  10. A. Diril, H. Nasibov and S. Uğur, UME radiation thermometer calibration facilities below the freezing point of silver (961.78 °C). AIP Conf. Proc., 684 (2003) 663–668.

    Article  ADS  Google Scholar 

  11. H. Nasibov, A. Diril, O. Pehlivan and M. Kalemci, Comparative study of two InGaAs-based reference radiation thermometers. Int. J. Thermophys., 38 (2017) 112.

    Article  ADS  Google Scholar 

  12. F. Girard and T. Ricolfi, A transfer standard infrared thermometer for the temperature range 150 °C to 1000 °C, TEMPMEKO-99, Delft 593–598 (1998).

  13. F. Sakuma and S. Hattori, Temperature: its measurement and control in science and industry, vol. 5, New York 421–7 (1982).

  14. J.D. Lucas and J.J. Segovia, Uncertainty calculation of the effective emissivity of cylinder-conical blackbody cavities. Metrologia, 53 (2016) 61–75.

    Article  ADS  Google Scholar 

  15. A. Rani, S.C. Bhatt, D.D. Shivagan and Y.P. Singh, Characterization and evaluation of thermal stability and uniformity of a liquid temperature bath containing a toluene heat pipe. MAPAN-J. Metrol. Soc. India, 28 (2013) 41–50.

    Google Scholar 

  16. G. Machin and R. Sergienko, A comparative study of Size of Source Effect (SSE) Determination Techniques, The 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, Berlin, (2002), 155–160.

  17. A. Rani, R.S. Upadhyay and Y.P. Singh, Investigating temperature distribution of two different types of blackbody sources using infrared pyrometry techniques. MAPAN-J. Metrol. Soc. India, 28 (2013) 91–98.

    Google Scholar 

  18. F. Sakuma, L. Ma, and Z. Yuan, Distance effect and size-of-source effect of radiation thermometers, TEMPMEKO 2001, Berlin, (2002) 161–166.

  19. K. Hill and D. Woods, Exploring the size-of-source and distance effects of radiation thermometers. TEMPMEKO 2004, Dubrovnik, (2005) 599–604.

  20. P. Saunders, Calibration and use of low-temperature direct-reading radiation thermometers. Meas. Sci. Technol., 20 (2009) 025104.

    Article  Google Scholar 

  21. P. Saunders and A. Manoi, Uncertainties in blackbody corrections for low-temperature radiation thermometers. Metrologia, 57 (2020) 024002.

    Article  ADS  Google Scholar 

  22. M.G. Cox, The evaluation of key comparison data. Metrologia, 39 (2002) 589–595.

    Article  ADS  Google Scholar 

  23. Y. Yamada, H. Sakate, F. Sakuma and A. Ono, Radiometric observation of melting and freezing plateaus for a series of metal-carbon eutectic points in the range 1330 °C to 1950 °C. Metrologia, 36 (1999) 207–210.

    Article  ADS  Google Scholar 

  24. Y. Yamada, Advances in high temperature standards above 1000 °C. MAPAN-J. Metrol. Soc. India, 20 (2005) 183–191.

    Google Scholar 

  25. E.R. Woolliams, G. Machin, D.H. Lowe and R. Winkler, Metal (carbide)–carbon eutectics for thermometry and radiometry: a review of the first seven years. Metrologia, 43 (2006) R11.

    Article  ADS  Google Scholar 

  26. U. Pant, H. Meena, G. Gupta and D.D. Shivagan, Development and long-term stability assessment of Co–C eutectic fixed point for thermocouple thermometry. Int. J. Thermophys., 40 (2019) 80.

    Article  ADS  Google Scholar 

  27. U. Pant, H. Meena and D.D. Shivagan, Development and realization of iron-carbon eutectic fixed point at NPLI. Mapan-J. Metrol. Soc. India, 33 (2018) 201.

    Google Scholar 

  28. A. Diril and O.P. Güven, Characterization of UME-made Co–C eutectic fixed-point blackbody cells. Int. J. Thermophys., 32 (2011) 2671–2679.

    Article  ADS  Google Scholar 

  29. U. Pant, H. Meena, G. Gupta et al., Development and realization of Fe–C and Co–C eutectic fixed-point blackbodies for radiation thermometry at CSIR-NPL. Int. J. Thermophys., 41 (2020) 101.

    Article  ADS  Google Scholar 

  30. K. Anhalt, J. Hartmann, D. Lowe, G. Machin, M. Sadli and Y. Yamada, Thermodynamic temperature determinations of Co–C, Pd–C, Pt–C and Ru–C eutectic fixed-point cells. Metrologia, 43 (2006) S78.

    Article  ADS  Google Scholar 

  31. B.B. Khlevnoy, I.A. Grigoryeva and D.A. Otryaskin, Development and Investigation of WC-C Fixed-Point Cells. Metrologia, 49 (2012) S59–S67.

    Article  ADS  Google Scholar 

  32. CCT-BIPM, Mise en pratique for the definition of the kelvin in the SI, 1–13 (2019) https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf.

  33. G. Machin, The Kelvin redefined. Meas. Sci. Technol., 29 (2018) 022001.

    Article  ADS  Google Scholar 

  34. S. Yadav and D.K. Aswal, Redefined SI units and their implications. MAPAN-J. Metrol. Soc. India, 35 (2020) 1–9.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for useful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humbat Nasibov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehlivan, O., Aldawood, N.D., Alfaleh, I. et al. Bilateral Comparison of Radiation Temperature Measurements from − 20 to 1600 °C Between TUBITAK-UME (Turkey) and SASO-NMCC (Kingdom of Saudi Arabia). MAPAN 37, 59–69 (2022). https://doi.org/10.1007/s12647-021-00514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00514-5

Keywords

Navigation