Skip to main content
Log in

Prediction of Tropospheric Amplitude Scintillation for Accurate Design of Earth-Space Communication Link over Akure, Nigeria

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Tropospheric scintillation is liable to spatio-temporal variation due to its dependence on meteorological parameters and link variables. The dynamics of variation must be comprehensively characterized to ensure accurate communication operations and improved Quality of Service (QoS). Three years of data obtained from contemporaneous measurement of Eutelsat W4/W7 satellite radio beacons and meteorological parameters were employed to develop a location-based scintillation prediction model over Akure Southwest Nigeria (7.17° N, 5.18° E, 358 m). Extensive analysis involving probability density and cumulative distribution functions and seasonal and diurnal variation was carried out using data spanning 36 months between January 2016 and December 2018. Tektronix Y400 NetTek spectrum Analyzer was used for satellite beacon measurement at 1-s sampling rate, while Davis Vantage Vue weather station was used to measure weather parameters at 1 min integration time. Results show that the standard deviation of scintillation log-amplitude (scintillation intensity, σχ) experiences highest and least variations during daytime and night time, respectively, and periods of strong scintillation cut across both dry and rainy seasons. The variation of σχ on diurnal scale was suitably described by GEV, gamma, and lognormal distribution models, while the developed models for scintillation intensity, enhancement, and fades performed excellently with high R2 values and minimal RMS errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Karasawa and T. Matsudo, Characteristics of fading on low-elevation angle Earth-space paths with concurrent rain attenuation and scintillation. IEEE Transactions on antennas and propagation, 39 (1991) 657–661.

    Article  ADS  Google Scholar 

  2. Omotosho, T. V., Akinwumi, S. A., Usikalu, M. R., Ometan, O. O., & Adewusi, M. O. (2016, October). Tropospheric scintillation and its impact on Earth-space satellite communication in Nigeria. In 2016 IEEE Radio and Antenna Days of the Indian Ocean (RADIO) (pp. 1–2). IEEE.

  3. C.Y. Chen and M.J. Singh, Comparison of tropospheric scintillation prediction models of the Indonesian climate. Earth, Planets and Space, 66 (2014) 64.

    Article  ADS  Google Scholar 

  4. I.E. Otung, Prediction of tropospheric amplitude scintillation on a satellite link. IEEE Transactions on Antennas and Propagation, 44 (1996) 1600–1608.

    Article  ADS  Google Scholar 

  5. M.M. Van de Kamp, J.K. Tervonen, E.T. Salonen and J.P. Baptista, Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Transactions on antennas and propagation, 47 (1999) 249–260.

    Article  ADS  Google Scholar 

  6. J.E. Allnutt, Satellite-to-ground radiowave propagation-Theory, practice and system at frequencies above 1 GHz. Stevenage Herts England Peter Peregrinus Ltd IEE Electromagnetic Waves Series29 (1989).

  7. J.C. Cardoso, A. Safaai-Jazi and W.L. Stutzman, Microscale diversity in satellite communications. IEEE transactions on antennas and propagation, 41 (1993) 801–805.

    Article  ADS  Google Scholar 

  8. D. Vanhoenacker and J.P.V. Poiares Baptista, Atmospheric Scintillation, in OPEX reference book on Attenuation Measurement and Prediction, ESA WPP-083 (1994).

  9. P. Garcia-del-Pino, J.M. Riera and A. Benarroch, Tropospheric scintillation with concurrent rain attenuation at 50 GHz in Madrid. IEEE transactions on antennas and propagation, 60 (2011) 1578–1583.

    Article  ADS  Google Scholar 

  10. W. Stutzman and D. Chakraborty, The Olympus and ACTS propagation measurement campaigns in the US. In 14th International Communication Satellite Systems Conference and Exhibit (1998)

  11. L.J. Ippolito, Radiowave propagation in satellite communications. Springer Science and Business Media (2012).

  12. A. Ashidi, J. Ojo, A. Adediji and O. Ajewole, Development and performance evaluation of tropospheric scintillation model on Ku-band satellite link over Akure. Nigeria. Advances in Space Research, 67 (2021) 1612–1622.

    Article  ADS  Google Scholar 

  13. M.S.J. Singh and SIS Hassan, Probability density function of tropospheric amplitude scintillation on a satellite link. In 4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings., pp. 102–105. IEEE (2003).

  14. M.M.J.L. Van de Kamp, J.K. Tervonen and E.T. Salonen, Tropospheric scintillation measurements and modelling in Finland. In Tenth International Conference on Antennas and Propagation (Conf. Publ. No. 436), Vol. 2, pp. 141–144. IET (1997).

  15. M.M.J.L. Van de Kamp, Asymmetric signal level distribution due to tropospheric scintillation. Electronics Letters, 34 (1998) 1145–1146.

    Article  ADS  Google Scholar 

  16. P. Yu, I.A. Glover, P.A. Watson, O.T. Davies, S. Ventouras and C. Wrench, Review and comparison of tropospheric scintillation prediction models for satellite communications. International journal of satellite communications and networking, 24 (2006) 283–302.

    Article  Google Scholar 

  17. T.J. Moulsley and E. Vilar, Experimental and theoretical statistics of microwave amplitude scintillations on satellite down-links. IEEE transactions on Antennas and Propagation, 30 (1982) 1099–1106.

    Article  ADS  Google Scholar 

  18. J.S. Mandeep, S.I.S. Hassan, M.F. Ain and K. Igarashi, Tropospheric scintillation measurement in Malaysia at Ku-band. Journal of Electromagnetic Waves and Applications, 22 (2008) 1063–1070.

    Article  Google Scholar 

  19. Y. Karasawa, M. Yamada and J.E. Allnutt, A new prediction method for tropospheric scintillation on Earth-space paths. IEEE Transactions on Antennas and Propagation, 36 (1988) 1608–1614.

    Article  ADS  Google Scholar 

  20. ITU-R P.581-3, Propagation Data and Prediction Methods Required for the Design of Earth-space Telecommunication Systems. ITU Radio-communication Bureau, Geneva (2000).

  21. ITU-R P.618–12, Propagation data and prediction methods required for the design of Earth-space telecommunications systems, Recommendation, P Series ITU-R, Int. Telecomm. Union, Geneva (2015).

  22. Y. Karasawa, K. Yasukawa and M. Yamada, Tropospheric scintillation in the 14/11-GHz bands on Earth-space paths with low elevation angles. IEEE transactions on antennas and propagation, 36 (1988) 563–569.

    Article  ADS  Google Scholar 

  23. G. Ortgies, Frequency dependence of slant-path amplitude scintillations. Electronics Letters, 29 (1993) 2219–2220.

    Article  ADS  Google Scholar 

  24. F.S. Marzano, R. Carlo, B. Alessio and C. Fabio, Assessment of model-based scintillation variance prediction on long-term basis using Italsat satellite measurements. Int J Satellite Comm, 17 (1999) 17–36.

    Article  Google Scholar 

  25. F.S. Marzano and G. d’Auria, Model-based prediction of amplitude scintillation variance due to clear-air tropospheric turbulence on Earth-satellite microwave links. IEEE Transactions on Antennas and Propagation, 46 (1998) 1506–1518.

    Article  ADS  Google Scholar 

  26. A.G. Ashidi, J.S. Ojo, A.T. Adediji and M.O. Ajewole, Characterization of Ku-band Amplitude Scintillation on Earth-space Path over Akure, SW Nigeria. Proceeding of XXXII General Assembly and Scientific Symposium, URSI (2017).

  27. A.G. Ashidi, Ku-Band scintillation over Akure, Nigeria. IOP SciNotes, 1 (2020) 034403.

  28. A.G. Ashidi, J.B. Dada and T.B. Lawal, Spectral analysis of Ku-Band scintillation dataset for satellite communication in a tropical location. In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), pp. 1–5 (2020). IEEE.

  29. A.G. Ashidi, J.S. Ojo, O.J. Ajayi and T.M. Akinmoladun, Evaluation of Concurrent Variation in Rain Specific Attenuation and Tropospheric Amplitude Scintillation Over Akure, Southwest Nigeria. Earth Syst Environ, 5 (2021) 547–559. https://doi.org/10.1007/s41748-021-00225-6.

    Article  Google Scholar 

  30. I.E. Otung and M.S. Mahmoud, Rain-induced scintillation on satellite downlinks. Electronics Letters, 32 (1996) 65–67.

    Article  ADS  Google Scholar 

  31. A.T. Adediji, M.O. Ajewole, J.S. Ojo, A.G. Ashidi, M. Ismail and J.S. Mandeep, Influence of some meteorological factors on tropospheric radio refractivity over a tropical location in Nigeria. Mausam, 66 (2015) 123–128.

    Article  Google Scholar 

  32. I.E. Otung, Amplitude scintillation of Ka-band satellite signals (Doctoral dissertation, University of Surrey) (1995).

  33. S.J.S. Mandeep, I.S.H. Syed, I. Kiyoshi, T. Kenji and I. Mitsuyoshi, Analysis of tropospheric scintillation intensity on Earth to space in Malaysia. Amer J App Sci, 3 (2006) 2029–2032.

    Article  Google Scholar 

  34. K. Richter, T.B. Hank, C. Atzberger and W. Mauser, Goodness-of-fit measures: what do they tell about vegetation variable retrieval performance from Earth observation data. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Vol. 8174, p. 81740R. International Society for Optics and Photonics (2011).

  35. A.G. Ashidi, J.S. Ojo, A.I. Kareem, O.S. Ojo and I. Emmanuel, Statistics of tropospheric amplitude scintillation over selected locations in tropical Nigeria. Acta Geophys. 69 (2021) 947–957. https://doi.org/10.1007/s11600-021-00588-4

  36. A.G. Ashidi, S.T. Ogunjo and T.M. Akinmoladun, Distribution analysis and autoregressive modelling of ultraviolet radiation over Akure, Nigeria. International Journal of Environment and Health, 9 (2019) 289–305.

    Article  Google Scholar 

  37. K. Adedayo, A. Ashidi, S. Oni and M. Ajewole, Variation of Surface Refractivity with Soil Permittivity and Leaf Wetness in a Tropical Location. International Journal of Wireless and Microwave Technologies (IJWMT), 9 (2019) 26–38. https://doi.org/10.5815/ijwmt.2019.04.03.

    Article  Google Scholar 

  38. M.S. Alouini, Impact of the atmosphere on Ka-Band satellite communication systems (Doctoral dissertation, Georgia Institute of Technology) (1995).

Download references

Acknowledgements

The authors express profound gratitude to the Communications Research Group of The Federal University of Technology, Akure, for providing an enabling environment to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayodeji Gabriel Ashidi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashidi, A.G., Ojo, J.S., Ajewole, M.O. et al. Prediction of Tropospheric Amplitude Scintillation for Accurate Design of Earth-Space Communication Link over Akure, Nigeria. MAPAN 37, 161–174 (2022). https://doi.org/10.1007/s12647-021-00509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00509-2

Keywords

Navigation