Skip to main content

Advertisement

Log in

A Versatile Ultra-Wideband Radio Sensor for Early Stage Detection of Breast Cancer

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Sensor design using ultra-wideband (UWB) technology is considered powerful emerging technique to extract information about the state of biological and physiological conditions of human organs for diagnostic purposes. Recently, UWB radio sensor technology is being proposed for early stage breast cancer detection in view of some superior characteristics or bio-markers over current methods. In this paper, a RDRA is designed, leading to develop the smart data acquisition system. A novel RDRA structure is simulated, which operates in the range of 3.7–7.4 GHz (67% bandwidth) which lies in the lower European UWB frequency band. The positive gain of the proposed antenna is stable across the active bandwidth, and the peak value is 2.5 dB, which makes the RDRA structure highly suitable for body centric applications, especially for early detection of breast cancer. Thus, the proposed RDRA antenna structure can be integrated for early stage breast cancer detection application as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Health Organization. (2020). WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization. https://apps.who.int/iris/handle/10665/330745.

  2. A.C. Society, Cancer Facts & Figures, The Society, New York, NY, USA, 2016. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html.

  3. K. B. C. Society, Breast Cancer Facts & Figures 2014,Korean Breast Cancer Society, Seoul, South Korea, (2014). https://pubmed.ncbi.nlm.nih.gov/28382089/.

  4. A.L. Siu, Screening for breast cancer: U.S. preventive ser- vices task force recommendation statement. Ann. Int. Med., 164 (2016) 279–296.

    Article  Google Scholar 

  5. D.R. Hooley, “Mammographic images showing how cancer looks in each of the breast density categories,” Dense Breast info, http://densebreast-info.org/faqs-for-health-professionals .aspx.

  6. P.M. Meaney, M.W. Fanning, T. Zhou, A. Golnabi, S.D. Geimer, and K.D. Paulsen, “Clinical microwave breast imaging—2D results and the evolution to 3D,” in Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications (ICEAA’09), pp. 881–884, Torino, Italy, (2009). https://doi.org/10.1109/ICEAA.2009.5297356.

  7. P.M. Meaney, M.W. Fanning, D. Li, S.P. Poplack and K.D. Paulsen, A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech., 48 (2000) 1841–1853. https://doi.org/10.1109/22.883861.

    Article  ADS  Google Scholar 

  8. T.M. Grzegorczyk, P.M. Meaney, P.A. Kaufman, R.M. Diflorio-Alexander and K.D. Paulsen, Fast 3-D tomographic microwave imaging for breast cancer detection. IEEE Trans. Med. Imaging, 31 (2012) 1584–1592. https://doi.org/10.1109/Tmi.2012.2197218.

    Article  Google Scholar 

  9. K.-J. Lee, J.-Y. Kim, S.-H. Son, J. Lee and S. Jeon, Sensing probe for 3–6 GHz microwave imaging systems. Electron. Lett., 50 (2014) 1049–1050. https://doi.org/10.1049/el.2014.1923.

    Article  ADS  Google Scholar 

  10. E. Porter, E. Kirshin, A. Santorelli, M. Coates and M. Popovı, Time-domain multistatic radar system for microwave breast screening. IEEE Antennas Wireless Propag. Lett., 12 (2013) 229–232. https://doi.org/10.1109/LAWP.2013.2247374.

    Article  ADS  Google Scholar 

  11. E.C. Fear, P.M. Meaney and M.A. Stuchly, Microwaves for breast cancer detection? IEEE Potentials, 22 (2003) 12–18. https://doi.org/10.1109/Mp.2003.1180933.

    Article  Google Scholar 

  12. M. Klemm, J.A. Leendertz, D. Gibbins, I.J. Craddock, A. Preece and andR. Benjamin, , Microwave radar-based breast cancer detection: imaging in inhomogeneous breast phantoms. IEEE Antennas Wireless Propag Lett., 8 (2009) 1349–1352. https://doi.org/10.1109/LAWP.2009.2036748.

    Article  ADS  Google Scholar 

  13. J. Bourqui, J. Garrett and E. Fear, Measurement and analysis of microwave frequency signals transmitted through the breast. Int. J. Biomed. Imaging, 2012 (2012) 11. https://doi.org/10.1155/2012/562563.

    Article  Google Scholar 

  14. R.C. Conceicao, H. Medeiros, M.O’Halloran, D. Rodriguez- Herrera, D. Flores-Tapia, and S. Pistorius, “Initial classification of breast tumour phantoms using a UWB radar prototype,” in Proceedings ofthe 15th International Conference on Electromag- netics in Advanced Applications (ICEAA ’13), pp. 720–723, IEEE, 2013. https://doi.org/10.1109/ICEAA.2013.6632339.

  15. N. Simonov, S.-I. Jeon, S.-H. Son, J.-M. Lee and H.-J. Kim, 3D microwave breast imaging based on multistatic radar concept system. J. Electromag. Eng. Sci., 12 (2012) 107–114. https://doi.org/10.5515/JKIEES.2012.12.1.107.

    Article  Google Scholar 

  16. S.S. Chaudhary, R.K. Mishra, A. Swarup and J.M. Thomas, “Dielectric properties of normal & malignant human breast tissues at radiowave and microwave frequencies.” Indian J. Biochem. Biophys., 21 (1984) 76–79.

    Google Scholar 

  17. P.M. Meaney, S.A. Pendergrass, M.W. Fanning and K.D. Paulsen, Importance of using a reduced contrast coupling medium in 2D microwave breast imaging. J. Electro- mag. Waves Appl., 17 (2003) 333–355. https://doi.org/10.1163/156939303322235851.

    Article  Google Scholar 

  18. L. Wang, Microwave sensors for breast cancer detection. Sensors, 18 (2018) 1–17. https://doi.org/10.3390/s18020655.

    Article  Google Scholar 

  19. R. Cicchetti, E. Miozzi and O. Testa, Wideband and UWB antennas for wireless applications: a comprehensive review. Int. J. Antennas Propag. (2017). https://doi.org/10.1155/2017/2390808.

    Article  Google Scholar 

  20. T. Uno and S. Adachi, Inverse scattering method for one-dimensional inhomogeneous layered media. IEEE Trans. Antennas Propag., 35 (1987) 1456–1466. https://doi.org/10.1109/TAP.1987.1144033.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. R.K. Mongia, P. Bhartia, C.L. Larose and S.R. Mishra, Accurate measurement of Q-factors of isolated dielectric resonators. IEEE Trans. Microw. Theory Tech., 42 (1994) 1463–1467. https://doi.org/10.1109/22.297807.

    Article  ADS  Google Scholar 

  22. T. Jun Cui and C. Hong Liang, Inverse scattering method for one-dimensional inhomogeneous lossy medium by using a microwave networking technique. IEEE Trans. Microw. Theory Tech., 43 (1995) 1773–1781. https://doi.org/10.1109/22.402259.

    Article  ADS  Google Scholar 

  23. O.P. Profiles, V.A Mikhnev, P. Vainikainen, “Two-Step Inverse Scattering Method for,” vol. 48, no. 2, pp. 293–298, 2000. https://doi.org/10.1109/8.833079.

  24. D. Franceschini, M. Donell, G. Franceschini and A. Massa, Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves. IEEE Trans. Microw. Theory Tech., 54 (2006) 1484–1494. https://doi.org/10.1109/TMTT.2006.871921.

    Article  ADS  Google Scholar 

  25. J.M. Geffrin, P. Sabouroux and C. Eyraud, Free space experimental scattering database continuation: experimental set-up and measurement precision. Inverse Probl. (2005). https://doi.org/10.1088/0266-5611/21/6/S09.

    Article  MATH  Google Scholar 

  26. W. Huang and A.A. Kishk, Compact dielectric resonator antenna for microwave breast cancer detection. IET Microwaves Antennas Propag., 3 (2009) 638–644. https://doi.org/10.1049/iet-map.2008.0170.

    Article  Google Scholar 

  27. S.M. Salvador, E.C. Fear, M. Okoniewski and J.R. Matyas, Exploring joint tissues with microwave imaging. IEEE Trans. Microw. Theory Tech., 58 (2010) 2307–2313. https://doi.org/10.1109/TMTT.2010.2052662.

    Article  ADS  Google Scholar 

  28. T. Kikkawa and T. Sugitani, “Planar UWB antenna array for breast cancer detection,” 2013 7th Eur. Conf. Antennas Propagation, EuCAP 2013, vol. 2, pp. 339–343, 2013. https://ieeexplore.ieee.org/document/6546278.

  29. S. Kwon and S. Lee, Instantaneous microwave imaging with time-domain measurements for breast cancer detection. Electron. Lett., 49 (2013) 653–654. https://doi.org/10.1049/el.2013.0248.

    Article  Google Scholar 

  30. E. Porter, E. Kirshin, A. Santorelli, M. Coates and M. Popoví, Time-domain multistatic radar system for microwave breast screening. IEEE Antennas Wirel. Propag. Lett., 12 (2013) 229–232. https://doi.org/10.1109/LAWP.2013.2247374.

    Article  ADS  Google Scholar 

  31. A. Sabouni and A.A. Kishk, Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging. IEEE Antennas Wirel. Propag. Lett., 12 (2013) 380–383. https://doi.org/10.1109/LAWP.2013.2252142.

    Article  ADS  Google Scholar 

  32. B.J. Mohammed, A.M. Abbosh, S. Mustafa and D. Ireland, Microwave system for head imaging. IEEE Trans. Instrum. Meas., 63 (2014) 117–123. https://doi.org/10.1109/TIM.2013.2277562.

    Article  Google Scholar 

  33. E. Porter, H. Bahrami, A. Santorelli, B. Gosselin, L.A. Rusch and M. Popovic, A wearable microwave antenna array for time-domain breast tumor screening. IEEE Trans. Med. Imaging, 35 (2016) 1501–1509. https://doi.org/10.1109/TMI.2016.2518489.

    Article  Google Scholar 

  34. Z. Xu, S. Zhu, R. Wang and R. Xie, An H-shape dielectric resonator antenna with U-slot on the patch. Prog. Electromagn. Res. Symp. (2016). https://doi.org/10.1109/PIERS.2016.7735647.

    Article  Google Scholar 

  35. V. Selvaraj, D. Baskaran, P.H. Rao, P. Srinivasan and R. Krishnan, Breast tissue tumor analysis using wideband antenna and microwave scattering. IETE J. Res. (2018). https://doi.org/10.1080/03772063.2018.1531067.

    Article  Google Scholar 

  36. W. Shao, A. Edalati, T.R. McCollough and W.J. McCollough, A time-domain measurement system for UWB microwave imaging. IEEE Trans. Microw. Theory Tech., 66 (2018) 2265–2275. https://doi.org/10.1109/TMTT.2018.2801862.

    Article  ADS  Google Scholar 

  37. M.Z. Mahmud, M.T. Islam, N. Misran, S. Kibria and M. Samsuzzaman, Microwave imaging for breast tumor detection using uniplanar AMC Based CPW-fed microstrip antenna. IEEE Access, 6 (2018) 44763–44775. https://doi.org/10.1109/ACCESS.2018.2859434.

    Article  Google Scholar 

  38. M.T. Islam, M.Z. Mahmud, M.T. Islam, S. Kibria and M. Samsuzzaman, A Low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array. Sci. Rep., 9 (2019) 1–13. https://doi.org/10.1038/s41598-019-51620-z.

    Article  Google Scholar 

  39. S.S. Singhwal, B.K. Kanaujia, A. Singh and J. Kishor, Novel circularly polarized dielectric resonator antenna for microwave image sensing application. Microw. Opt. Technol. Lett., 61 (2019) 1821–1827. https://doi.org/10.1002/mop.31830.

    Article  Google Scholar 

  40. G. Kaur and A. Kaur, Breast tissue tumor detection using ‘ S ’ parameter analysis with an UWB stacked aperture coupled microstrip patch antenna having a ‘ + ’ shaped defected ground structure. Int. J. Microw. Wirel. Technol. (2019). https://doi.org/10.1017/s1759078719001442.

    Article  Google Scholar 

  41. G. Kaur and A. Kaur, Monostatic radar-based microwave imaging of breast tumor detection using a compact cubical dielectric resonator antenna. Microw. Opt. Technol. Lett. (2020). https://doi.org/10.1002/mop.32557.

    Article  Google Scholar 

  42. A. Petosa, “Dielectric resonator antenna handbook” Artech House, (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taruna Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Vasishath, M., Vasisht, P. et al. A Versatile Ultra-Wideband Radio Sensor for Early Stage Detection of Breast Cancer. MAPAN 37, 137–147 (2022). https://doi.org/10.1007/s12647-021-00504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00504-7

Keywords

Navigation