Skip to main content
Log in

Limitation of the Artifact-Based Definition of the Kilogram, its Redefinition and Realization Using Kibble Balance

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Until recently, the kilogram was the only SI base unit having an artifact as its primary standard. For more than four decades, there have been continuous efforts worldwide toward redefining the kilogram, the SI unit of mass, to have an artifact-independent and time-invariant definition based on a fundamental constant. Due to the effort of metrologists across the globe, on 16th November 2018, in the 26th meeting of the General Conference on Weights and Measure (CGPM), the kilogram was finally redefined based on the Planck constant. This paper gives an overview of the limitations of an artifact-based definition and the significance of the redefinition, and, its implications. The principle of the Kibble balance and its major components and their role is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Davis, The SI unit of mass. Metrologia, 40 (2003) 299–305.

    Article  ADS  Google Scholar 

  2. G. Girard, The Third Periodic Verification of National Prototypes of the Kilogram (1988–1992). Metrologia, 31 (1994) 317–336.

    Article  ADS  Google Scholar 

  3. M. Stock, P. Barat, R.S. Davis, A. Picard and M.J.T. Milton, Calibration campaign against the international prototype of the kilogram in anticipation of the redefinition of the kilogram part I: comparison of the international prototype with its official copies. Metrologia, 52 (2015) 310–316.

    Article  ADS  Google Scholar 

  4. BIPM. (Former) International Prototype of the Kilogram, Verifications. Available: https://www.bipm.org/en/bipm/mass/ipk/

  5. CSIR-National Physical Laboratory. Available: www.nplindia.org

  6. Lal, Tripurari, Mandal, Goutam and Gopan, C. K. Re-establishment of National Standards of Mass at NPL India. MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA , 23 (3). pp. 139–158. ISSN 0970-3950

  7. B. Ehtesham, T. John, S. Yadav, H. K. Singh, G. Mandal, and N. Singh, Journey of Kilogram from Physical Constant to Universal Physical Constant (h) via Artefact: A Brief Review, MAPAN (2020).

  8. J. Pepitone, A Vote of Mass Importance: Historic SI Unit Overhaul Redefines Kilogram, Ampere, and More. IEEE Spectrum (2018). Available: https://spectrum.ieee.org/tech-talk/at-work/test-and-measurement/a-vote-of-mass-importance-historic-si-unit-overhaul-redefines-kilogram-ampere-and-more

  9. Resolution adopted at the 26th CGPM meeting (2018). https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf

  10. Anil Kumar, Harish Kumar, V. N. Ojha, Shakti Singh, Girija Moona, Satish, P. K. Dubey, H. K. Singh, Goutam Mandal and D. K. Aswal, National Physical Laboratory demonstrates 1 g Kibble balance: Linkage of macroscopic mass to Planck constant. Current Science, 113 (2017) 381–382.

  11. BIPM. SI Brochure - Appendix 2 [Online]. Available: https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kilogram.pdf

  12. S. Davidson and M. Stock, Beginning of a new phase of the dissemination of the kilogram, Metrologia (2021). (https://doi.org/10.1088/1681-7575/abef9f)

  13. CCM Note on dissemination after redefinition. https://www.bipm.org/documents/20126/41489673/CCM_Note-on-dissemination-after-redefinition.pdf/3743d0d0-d8cc-325c-3219-547a6ea47a47

  14. M Stock, P Conceição, H Fang, F Bielsa, A Kiss, L Nielsen, D Kim, M Kim, K -C Lee, S Lee, M Seo, B -C Woo, Z Li, J Wang, Y Bai, J Xu, D Wu, Y Lu, Z Zhang, Q He, D Haddad, S Schlamminger, D Newell, E Mulhern, P Abbott, Z Kubarych, N Kuramoto, S Mizushima, L Zhang, K Fujita, S Davidson, R G Green, J O Liard, N F Murnaghan, C A Sanchez, B M Wood, H Bettin, M Borys, M Mecke, A Nicolaus, A Peter, M Müller, F Scholz, A Schofeld, Report on the CCM key comparison of kilogram realizations CCM.M-K8.2019, Metrologia 57 (2020) 07030–07030.

  15. B.P. Kibble and G.J. Hunt, Measurement of the gyromagnetic ratio of the proton by the strong field method. Metrologia, 15 (1979) 5–30.

    Article  ADS  Google Scholar 

  16. B.P. Kibble, I.A. Robinson and J.H. Belliss, A Realization of the SI Watt by the NPL Moving-coil Balance. Metrologia, 27 (1990) 173–192.

    Article  ADS  Google Scholar 

  17. B.D. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett., 1 (1962) 251–253.

    Article  ADS  Google Scholar 

  18. Proceedings of the 21st meeting of the General Conference onn Weights and Measures. https://www.bipm.org/utils/en/pdf/CGPM/CGPM21-EN.pdf

  19. M. Stock, Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram. Metrologia, 50 (2012) R1–R16.

    Article  Google Scholar 

  20. D Haddad, F Seifert, L S Chao, A Possolo, D B Newell, J R Pratt, C J Williams and S Schlamminger, Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017, Metrologia 54 (2017) 633–641.

  21. B M Wood, C A Sanchez, R G Green and J O Liard, A summary of the Planck constant determinations using the NRC Kibble balance. Metrologia, 54 (2017) 399–409.

  22. H. Fang, F. Bielsa, S. Li, A. Kiss, and M. Stock, The BIPM Kibble balance for realizing the kilogram definition, Metrologia 57 (2020) 045009.

  23. H. Fang, F. Bielsa, S. Li, A. Kiss, and M. Stock, Progress on the BIPM watt balance, Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa (2016) 1–2.

  24. H. Fang, A. Kiss, A. Picard and M. Stock, A watt balance based on a simultaneous measurement scheme. Metrologia, 51 (2014) S80–S87.

    Article  ADS  Google Scholar 

  25. W Beer, AL Eichenberger, B Jeanneret, B Jeckelmann, AR Pourzand, P Richard, JP Schwarz, The METAS watt balance: a summary of progress, Conference Digest Conference on Precision Electromagnetic Measurements (2002) 576–577.

  26. A. Eichenberger, H. Baumann, B. Jeanneret, B. Jeckelmann, P. Richard and W. Beer, Determination of the Planck constant with the METAS watt balance. Metrologia, 48 (2011) 133–141.

    Article  ADS  Google Scholar 

  27. Thomas, M.; Ziane, D.; Pinot, P.; Karcher, R.; Imanaliev, A.; Pereira Dos Santos, F.; Merlet, S.; Piquemal, F.; Espel, P., A determination of the Planck constant using the LNE Kibble balance in air. Metrologia, 54 (2017) 468–480.

  28. M Thomas, P Espel, D Ziane, P Pinot, P Juncar, F Pereira Dos Santos, S Merlet, F Piquemal and G Genevès, First determination of the Planck constant using the LNE watt balance. Metrologia, 52 (2015) 433–443.

  29. Xu, Jinxin, Zhang, Zhonghua, Li, Zhengkun, Bai, Yang, Wang, Gang, Li, Shisong, Zeng, Tao, Li, Chen, Lu, Yunfeng, Han, Bing, Wang, Nong, Zhou, Kunli, A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM. Metrologia, 53 (2016) 86–97.

  30. Zhonghua Zhang, Qing He, Zhengkun Li, Yunfeng Lu, Jianting Zhao, Bing Han,Yaqiong Fu, Chen Li, and Shisong Li, Recent Development on the Joule Balance at NIM. IEEE Trans. Instrum. Meas., 60 (2011) 2533–2538.

  31. M.H. Kim, D. Kim, B.C. Woo, D. Ha, S.U. Lee, H.S. Park, J. Kim, K.C. Lee, Establishment of KRISS watt balance system to have high uniformity performance, Int. J. Precis. Eng. Manuf. 18 (7) (2017) 945–953.

  32. Dongmin Kim, Byung-Chill Woo, Kwang-Cheol Lee, Kee-Bong Choi, Jong-Ahn Kim, Jae Wan Kim and Jinhee Kim, Design of the KRISS watt balance. Metrologia, 51 (2014) S96–S100.

  33. H. Ahmadov, An oscillating magnet watt balance, Conference on Precision Electromagnetic Measurements (CPEM 2016), (2016)1–2.

  34. T. C. Öztürk, H. Ahmedov, C. Birlikseven, and G. Gülmez, Feasibility study of electrical measurements of oscillating-magnet watt balance, Conference on Precision Electromagnetic Measurements (CPEM 2016), (2016)1–2.

  35. C.M. Sutton and M.T. Clarkson, A magnet system for the MSL watt balance. Metrologia, 51 (2014) S101–S106.

    Article  ADS  Google Scholar 

  36. C. M. Sutton, M. T. Clarkson, and W. M. Kissling, The feasibility of a watt balance based on twin pressure balances, Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa (2016) 1–2.

  37. T.G Mametja, H. Potgieter, A.E Karsten and A. Buffler, NMISA’s precursor Kibble watt balance, Test and Measurement 2018 Conference and Workshop, Western Cape, South Africa (2018).

  38. C. Sonntag, T. Mametja, and A. Karsten, A Low-Cost Kibble Balance for Africa, Conference on Precision Electromagnetic Measurements (CPEM) (2020) 1–2.

  39. R. Steiner, History and progress on accurate measurements of the Planck constant, Reports on Progress in Physics, 76 (2012) 016101.

  40. I.A. Robinson and S. Schlamminger, The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass. Metrologia, 53 (2016) A46–A74.

    Article  ADS  Google Scholar 

  41. S. Li, F. Bielsa, M. Stock, A. Kiss and H. Fang, A permanent magnet system for Kibble balances. Metrologia, 54 (2017) 775–783.

    Article  ADS  Google Scholar 

  42. S. Schlamminger, Design of the Permanent-Magnet System for NIST-4. IEEE Trans. Instrum. Meas., 62 (2013) 1524–1530.

    Article  Google Scholar 

  43. P. Gournay, G. Geneves, F. Alves, M. Besbes, F. Villar and J. David, Magnetic circuit design for the BNM Watt balance experiment. IEEE Trans. Instrum. Meas., 54 (2005) 742–745.

    Article  Google Scholar 

  44. T.J. Quinn, The beam balance as an instrument for very precise weighing. Measurement Science and Technology, 3 (1992) 141–159.

    Article  ADS  Google Scholar 

  45. C.M. Sutton, An oscillatory dynamic mode for a watt balance. Metrologia, 46 (2009) 467–472.

    Article  ADS  Google Scholar 

  46. Zhonghua Zhang, Zhengkun Li, Bing Han, Yunfeng Lu, Shisong Li,Student Member, IEEE,Jinxin Xu, and Gang Wang, Coils and the Electromagnet Used in the Joule Balance at the NIM. IEEE Trans. Instrum. Meas., 64 (2015) 1539–1545.

  47. K. Jones, L. A. Christian, and C. M. Sutton, Coil correction for oscillatory calibration of a watt balance, Conference on Precision electromagnetic Measurements (2012) 330–331.

  48. B. Jeanneret and S.P. Benz, Application of the Josephson effect in electrical metrology. The European Physical Journal Special Topics, 172 (2009) 181–206.

    Article  ADS  Google Scholar 

  49. Yi-hua Tang, V. Ojha, S. Schlamminger, A. Rufenacht, C. Burroughs, P. Dresselhaus, S. Benz, A 10 V programmable Josephson voltage standard and its applications for voltage metrology. Metrologia, 49 (2012) 635–643.

  50. E. J. Leaman, D. Haddad, F. Seifert, L. S. Chao, A. Cao, J. R. Pratt, S. Schlamminger, and D. B. Newell, A Determination of the Local Acceleration of Gravity for the NIST-4 Watt Balance. IEEE Trans. Instrum. Meas., 64 (2015) 1663–1669.

  51. S. Merlet, A. Kopaev, M. Diament, G. Geneves, A. Landragin and F. Pereira Dos Santos, Micro-gravity investigations for the LNE watt balance project. Metrologia, 45 (2008) 265–274.

    Article  ADS  Google Scholar 

  52. P. Jousset, M.V. Ruymbeke, S. Bonvalot and M. Diament, Performance of two Scintrex CG3M instruments at the fourth International Comparison of Absolute Gravimeters. Metrologia, 32 (1995) 231–244.

    Article  ADS  Google Scholar 

  53. I.A. Robinson, Comparing In-Air and In-Vacuum Mass Standards Without Buoyancy Corrections via In-Vacuum Weighing. Metrologia, 27 (1990) 159–159.

    Article  ADS  Google Scholar 

  54. I. A. Robinson, Alignment of the NPL Mark II watt balance, Measurement Science and Technology 23 (2012) 124012.

  55. Gillespie, Fujii, K., Newell, D.B., Olsen, P.T., Picard, O.A., Steiner, R.L., Stenbakken, G.N., Williams, E.R., Alignment uncertainties of the NIST watt experiment, IEEE Trans. Instrum. Meas. 46 (1997) 605–608.

  56. E. d. Mirandés, H. Fang, A. Kiss, S. Solve, M. Stock, and A. Picard, Alignment Procedure Used in the BIPM Watt Balance, IEEE Trans. Instrum. Meas. 60 (2011) 2415–2421.

Download references

Acknowledgements

The authors are grateful to Dr. D. K. Aswal, Ex Director, CSIR-NPL, Dr. Sanjay Yadav Head, PMMD, CSIR-NPL, and Dr. H. K. Singh PI, Kibble Balance, CSIR-NPL for their guidance, encouragement and for providing all the facilities. The authors are also grateful to Mr. Dinesh Sharma, Mass metrology, CSIR-NPL, for providing the technical support. The authors are thankful to Dr. Harish Kumar, NIT Delhi, for the fruitful discussions and suggestions. The authors are also grateful to the anonymous reviewers for their valuable suggestions in improving the quality of the manuscript. One of the authors, BE is thankful to CSIR for providing financial support in the form of CSIR-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehtesham, B., John, T. & Singh, N. Limitation of the Artifact-Based Definition of the Kilogram, its Redefinition and Realization Using Kibble Balance. MAPAN 36, 333–341 (2021). https://doi.org/10.1007/s12647-021-00466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00466-w

Keywords

Navigation