Skip to main content
Log in

Estimation of Error in Distance, Length, and Angular Measurements Using CCD Pixel Counting Technique

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The pixel counting technique (PCT) has recently emerged as a promising method for the measurement of the dimensions of an object, showing significance in the applications like monitoring the traffic on roads, measuring the dimension of a biological sample, and many more. Therefore, measuring the accuracy of PCT is the topic of current research. The focus of our study is to evaluate the percentage error in the measurement of length, distance, and angle using PCT. The calculated maximum percentage errors in the length, distance, and angle measurements are 1.3%, 1.01%, and 3.9%, with maximum uncertainty due to repeatability of 0.4%, 0.29%, and 0.88%, respectively. The study outcomes conclude that the object visibility and illumination parameters play a significant role in estimating the uncertainty in the PCT-based object dimension calculations, especially angular measurements. This study will be beneficial for estimating the accuracy of PCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Anastassopoulou, A. Tsakris, G.P. Patrinos and Y. Manoussopoulos, Pixel-based machine learning and image reconstitution for dot-ELISA pathogen diagnosis in biological samples. Front. Microbiol., 12 (2021) 1–15.

    Article  Google Scholar 

  2. Y. Luo, R. Viswanathan, M.P. Hande, A.H.P. Loh and L.F. Cheow, Massively parallel single-molecule telomere length measurement with digital real-time PCR. Sci. Adv., 6 (2020) 1–9.

    Google Scholar 

  3. R. de Necochea-Campion, A. Gonda, J. Kabagwira, S. Mirshahidi, H. Cao, M.E. Reeves and N.R. Wall, A practical approach to extracellular vesicle characterization among similar biological samples. Biomed. Phys. Engin. Express, 4 (2018) 065013.

    Article  Google Scholar 

  4. D. Cenadelli, M. Zeni, A. Bernagozzi, P. Calcidese, L. Ferreira, C. Hoang and C. Rijsdijk, An international parallax campaign to measure distance to the Moon and Mars. Eur. J. Phys., 30 (2008) 35.

    Article  Google Scholar 

  5. A. Elfes, Sonar-based real-world mapping and navigation. IEEE Robot. Autom. Lett., 3 (1987) 249–265.

    Article  Google Scholar 

  6. D.P. Williams, On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery. IEEE J. Ocean. Eng., 46 (2021) 236–260.

    Article  ADS  Google Scholar 

  7. K. Vinutha, K. Vinutha and T. Yuvaraja, Under water mine detection using SONAR. J. Comput. Theor. Nanosci., 15 (2018) 2150–2152.

    Article  Google Scholar 

  8. A. Prasetyono, I. Adiyasa, A. Yudianto and S. Agit, Multiple sensing method using moving average filter for automotive ultrasonic sensor. J. Phys. Conf. Ser., 2020 (2020) 012075(1–7).

    Google Scholar 

  9. J. Ledvina, L. Vykydal and P. Horský, Fast automatic tuning of a synthetic inductor for automotive transformer-less ultrasonic sensor in park assist systems. IEEE Sens. J., 19 (2019) 10568–10573.

    Article  ADS  Google Scholar 

  10. K.W. Au, A.B. Touchberry, B. Vanvoorst and J. Schewe, System and method for navigating an autonomous vehicle using laser detection and ranging, Google Patents (2013).

  11. B. Béchadergue, L. Chassagne and H. Guan, Simultaneous visible light communication and distance measurement based on the automotive lighting. IEEE Trans. Intell. Veh., 4 (2019) 532–547.

    Article  Google Scholar 

  12. L. Piotrowsky, T. Jaeschke, S. Kueppers, J. Siska and N. Pohl, Enabling high accuracy distance measurements with FMCW radar sensors. IEEE Trans. Microw. Theory Tech., 67 (2019) 5360–5371.

    Article  ADS  Google Scholar 

  13. M. Scherhäufl, F. Hammer, M. Pichler-Scheder, C. Kastl and A. Stelzer, Radar distance measurement with Viterbi algorithm to resolve phase ambiguity. IEEE Trans. Microw. Theory Tech., 68 (2020) 3784–3793.

    Article  ADS  Google Scholar 

  14. C.-C.J. Hsu, M.-C. Lu and Y.-Y. Lu, Distance and angle measurement of objects on an oblique plane based on pixel number variation of CCD images. IEEE Trans. Instrum. Meas., 60 (2011) 1779–1794.

    Article  Google Scholar 

  15. C.-C. Hsu, M.-C. Lu, W.-Y. Wang and Y.-Y. Lu, Distance measurement based on pixel variation of CCD images. ISA Trans., 48 (2009) 389–395.

    Article  Google Scholar 

  16. P. Harikrishnan, A. Thomas, J. Nisha, V.P. Gopi and P. Palanisamy, Pixel matching search algorithm for counting moving vehicle in highway traffic videos. MULTIMED TOOLS APPL, 80 (2021) 3153–3172.

    Article  Google Scholar 

  17. M. Arsalan, M. Owais, T. Mahmood, J. Choi and K.R. Park, Artificial intelligence-based diagnosis of cardiac and related diseases. J. Clin. Med., 9 (2020) 871.

    Article  Google Scholar 

  18. L. Zhu, Q. Liu, B. Yang, H. Ju and J. Lei, Pixel counting of fluorescence spots triggered by DNA walkers for ultrasensitive quantification of nucleic acid. Anal. Chem., 90 (2018) 6357–6361.

    Article  Google Scholar 

  19. K. Nithyakalyani, R. Kalpana and R. Vigneswaran, Volumetric assessment of human brain morphology using pixel counting technique, 2014 International Conference on Science Engineering and Management Research (ICSEMR) (2014), 1–6.

  20. M. Jiřík, M. Bartoš, P. Tomášek, A. Malečková, T. Kural, J. Horáková, D. Lukáš, T. Suchý, P. Kochová, M. Hubálek Kalbáčová, M. Králíčková and Z. Tonar, Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech., 81 (2018) 551–568.

    Article  Google Scholar 

  21. R. Dwivedi, P. Sharma, V.K. Jaiswal and R. Mehrotra, Elliptically squeezed axicon phase for detecting topological charge of vortex beam. Opt. Commun., 485 (2021) 126710.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-National Physical Laboratory India for support and permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, R., Gangwar, S., Saha, S. et al. Estimation of Error in Distance, Length, and Angular Measurements Using CCD Pixel Counting Technique. MAPAN 36, 313–318 (2021). https://doi.org/10.1007/s12647-021-00463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00463-z

Keywords

Navigation