Skip to main content
Log in

Progress Towards the Establishment of Various Redefinitions of SI Unit “Metre” at CSIR-National Physical Laboratory- India and its Realization

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Length measurement has been an indispensable part of human life since the ancient era till present days. Length and area measurement got importance from very early Indus Valley civilization for construction of roads to measurement of agricultural land. In India, length measurements were defined in Indus Valley civilization and rulers had rules for length measurements. Mughal and British adopted the measurement system contemporary to the international system of units available and were used in the country. During twilight years of the regime of British government, plans for setting up an institute for measurement standards were made and a national institute of measurements was founded in 1942. Within the first decade of laying the constitution of India, SI units were adopted. In this paper, we describe the history and advancements in the progress towards length measurement through its various redefinitions from time to time. It covers the evolution of SI unit of length “Metre” through its diversified redefinitions from the ages of body parts to latest quantum standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. S. Iwata, On the standard deviations of the weights of Indus civilization, Bull. Soc. Near Eastern Stud. Jpn., (1974).

  2. T.M. Whitelaw, Collecting classical cities: prospects and problems. In P. Johnson and M. Millett (eds), Archaeological survey and the city, 70–106, Oxford: Oxbow Books, (2012).

    Chapter  Google Scholar 

  3. K.A.R. Kennedy, S.R. Rao, Mortimer wheeler, Lothal and the Indus civilization, The American Historical Review, (1975).

  4. Dr. S.V. Gupta, Ch. 1.2.4 Time Measurements. In H. Robert, O. Richard, M. Parisi, J. Warlimont (eds.), Units of measurement: past, present and future. International system of units. Google books, Springer Series in Materials Science: 122. Springer. p. 3, (2010) ISBN 9783642007378.

  5. B.V. Subbarayappa, Indian astronomy: an historical perspective. In S.K. Biswas, D.C. Mallik, C.V. Vishveshwara (eds.). Cosmic Perspectives, Cambridge University Press. pp. 25–40, (1989). ISBN 978-0-521-34354-1.

  6. J. Richards, The Mughal empire, Cambridge University Press, (1996). ISBN 0-521-56603-7.

  7. B. Zaheer, The science of empire: scientific knowledge, civilization, and colonial rule in India, State University of New York Press, (1996) ISBN 0-7914-2919-9.

  8. B. Chakrabarti, Fifty years of the metric system in India and its adoption in our daily life, Current Science, 92 (3) (2007) 390–391, Indian Academy of Sciences.

  9. The International Metre Commission (1870–1872). International Bureau of Weights and Measures. Retrieved 15 August 2010.

  10. The BIPM and the evolution of the definition of the metre, International Bureau of Weights and Measures, Retrieved 30 August 2016.

  11. Article 3, Metre Convention.

  12. H. Barrell, The Metre, Contemporary Physics. 3 (6) (1962), 415–434. https://doi.org/10.1080/00107516208217499.

    Article  ADS  Google Scholar 

  13. F.M. Phelps, Airy points of a metre bar, American Journal of Physics. 34 (5) (1966), 419–422. https://doi.org/10.1119/1.1973011.

    Article  ADS  Google Scholar 

  14. https://en.wikipedia.org/wiki/International_Bureau_of_Weights_and_Measures.

  15. A.A. Michelson, J.-R. Benoît, Détermination expérimentale de la valeur du mètre en longueurs d’ondes lumineuses, Travaux et Mémoires du Bureau International des Poids et Mesures (in French). 11 (3) (1895), 85.

    Google Scholar 

  16. CSIR-National Physical Laboratory, Tresca Meter Bar Copy No. 57.

  17. T.H. Maiman, Stimulated optical radiation in ruby, Nature. 187 (4736) (1960), 493–494. https://doi.org/10.1038/187493a0.

  18. K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, R.L. Barger, J.L. Hall, Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser, Physical Review Letters. 29 (19) (1972), 1346–1349. https://doi.org/10.1103/physrevlett.29.1346.

  19. R.L. Barger, J.L. Hall, Wavelength of the 3.39-μm laser-saturated absorption line of methane, Applied Physics Letters. 22 (4) (1973), 196–199. https://doi.org/10.1063/1.1654608.s2cid1841238.

    Article  ADS  Google Scholar 

  20. K.M. Evenson, G.W. Day, J.S. Wells, L.O. Mullen, Extension of absolute frequency measurements to the cw He-Ne laser at 88 THz (3.39 μ), Applied Physics Letters. 20 (3) (1972), 133–134. https://doi.org/10.1063/1.1654077.

  21. Resolution 2 of the 15th CGPM. In 15th meeting of the general conference on weights and measures. International Bureau of Weights and Measures, (1975).

  22. CIPM, New definition of the metre: the wavelength of krypton-86, In Proc. 11th general council of weights and measures, Paris France, (1960).

  23. BIPM, “Recommended values of standard frequencies” (2018). https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html.

  24. F. Riehle, P. Gill, F. Arias, L. Robertson, The CIPM list of recommended frequency standard values: guidelines and procedures, Metrologia 55 (2018), 188. https://doi.org/10.1088/1681-7575/aaa302.

    Article  ADS  Google Scholar 

  25. L.V. Judson, L.E. Barbrow (ed.). Weights and Measures Standards of the United States, a brief history (PDF). Derived from a prior work by Louis A. Fisher (1905). USA: US Department of Commerce, National Bureau of Standards. LCCN 76-600055. NBS Special Publication 447; NIST SP 447; 003-003-01654-3. Retrieved 12 October 2015.

  26. P. Hariharan, Basics of Interferometry, Second Edition. Elsevier, (2007) ISBN 978-0-12-373589-8.

  27. C.D. Miller, The ether-drift experiment and the determination of the absolute motion of the earth, Rev. Mod. Phys. V5, N3(1933), pp. 203–242.

    Article  ADS  Google Scholar 

  28. A.A. Michelson, The relative motion of the earth and the luminiferous ether. American Journal of Science. 22 (128) (1881), 120–129.

    Article  ADS  Google Scholar 

  29. R.S. Shankland, Michelson–Morley experiment, American Journal of Physics. 31(1) (1964), 16–35.

  30. A.A. Michelson, On the correction of optical surfaces. In Proceedings of the national academy of sciences of the United States of America. 4 (7) (1918), 210–212.

    Article  ADS  Google Scholar 

  31. CSIR-NPL, The Legacy Continues, Diamond Jubilee Document, Thomson Press (I) ltd. (2007).

  32. V.D. Dandawate, P.N. Puntambekar, D. Sen, Frequency stability and reproducibility of iodine stabilised He-Ne laser at 633 nm, Pramana 2 (1984), 73–578.

  33. P. Hariharan, D. Sen, Radial Sheering interferometers, Journal of Scientific Instruments, 38-1-428 (1961).

  34. B. Chakrabarti, Fifty years of the metric system in India and its adoption in our daily life, Current Science, 92 (3) (2007), 390–391).

  35. C.R. Pollock, D.A. Jennings, F.R. Petersen, J.S. Wells, R.E. Drullinger, E.C. Beaty, K.M. Evenson, Direct frequency measurements of transitions at 520 THz (576 nm) in iodine and 260 THz (1.15 μm) in neon. Optics Letters. 8 (3) (1983), 133–135. https://doi.org/10.1364/ol.8.000133.pmid19714161.s2cid42447654.

  36. D.A. Jennings, C.R. Pollock, F.R. Petersen, R.E. Drullinger, K.M. Evenson, J.S. Wells, J.L. Hall, H.P. Layer, Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633-nm) laser. Optics Letters. 8 (3) (1983), 136–138. https://doi.org/10.1364/ol.8.000136.pmid19714162.

    Article  ADS  Google Scholar 

  37. W. Schweitzer, E. Kessler, R. Deslattes, H. Layer, J. Whetstone, Description, performance and wavelengths of iodine stabilized lasers, Appl. Opt. 12 (1) (1973), 2927–2938.

    Article  ADS  Google Scholar 

  38. H. Layer, R. Deslattes, W. Schweitzer, Laser wavelength comparison by high resolution interferometry, Appl. Opt. 15 (3) (1976), 734–743.

    Article  ADS  Google Scholar 

  39. H. Layer, A portable iodine stabilized helium-neon laser, IEEE Trans. Instrum. Meas. 29, 4 (1980).

    Article  Google Scholar 

  40. D. Jennings, C. Pollock, F. Peterson, K. Evenson, J. Wells, J. Hall, H. Layer, Direct frequency measurements of the I2-stabilized He-Ne 473-THz (633-nm) Laser, Opt. Lett. 8 (3) (1983), 136–138.

    Article  ADS  Google Scholar 

  41. R. Holzwarth, A.Y. Nevsky, M. Zimmermann, T. Udem, T.W. H¨ansch, J. von Zanthier, H. Walther, J.C. Knight, W.J. Wadsworth, P. Russel, Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer, Appl. Phys. B 73 (2001), 269–71.

  42. A.Y. Nevsky, R. Holzwarth, J. Reichert, T. Udem, T.W. H¨ansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P.V. Pokasov, M.N. Skvortsov, S.N. Bagayev, Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm, Opt. Commun. 192 (2001), 263–272.

  43. L.J. Gillespie, L.A.D. Fraser, J. Am. Chem. Soc. 58 (1936), 2260–2263.

    Article  Google Scholar 

  44. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J.L. Hall, Absolute frequency atlas of molecular I2 lines at 532 nm, IEEE. Trans. Instrum. Meas. 48 (1999), 544–549.

    Article  Google Scholar 

  45. Y. Zhang, J. Ishikawa, F.L. Hong, Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator, Opt. Commun. 200 (2001), 209–15.

    ADS  Google Scholar 

  46. J. Ye, T.H. Yoon, J.L. Hall, A.A. Madej, J.E. Bernard, K.J. Siemsen, L. Marmet, J.M. Chartier, A. Chartier, Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb, Phys. Rev. Lett. 85 (2000), 3797–800.

    Article  ADS  Google Scholar 

  47. T.H. Yoon, J. Ye, J.L. Hall, J.M. Chartier, Absolute frequency measurement of the iodine-stabilized He–Ne laser at 633 nm, Appl. Phys. B. 72 (2001), 221–6.

    Google Scholar 

  48. J.E. Bernard, A.A. Madej, K.J. Siemsen, L. Marmet, Absolute frequency measurement of the He–Ne/I2 standard at 633 nm, Opt. Commun. 187 (2001), 211–8.

    ADS  Google Scholar 

  49. J.M. Chartier, A. Chartier, I2 stabilized 633 nm He–Ne Lasers: 25 years of international comparisons, laser frequency stabilization, standards, measurement, and applications, Proc. SPIE. 4269 (2001), 123–32.

  50. J.M. Chartier, A. Chartier, International comparisons of He–Ne lasers stabilized with 127I2 at λ ≈ 633 nm (July 1993 to September 1995) Part I: general, Metrologia. 34 (1997), 297–300.

  51. B. Ståhlberg, E. Ikonen, J. Haldin, J. Hu, T. Ahola, K. Riski, L. Pendrill, U. K¨arn, J. Henningsen, H. Simonsen, A. Chartier, J.M. Chartier, International comparisons of He–Ne lasers stabilized with 127I2 at λ ≈ 633 nm (July 1993 to September 1995) Part II: second comparison of Northern European lasers at λ ≈ 633 nm, Metrologia. 34 (1997), 301–7.

  52. V. Navratil, A. Fodrekov´a, R. G`ata, J. Blabla, P. Balling, M. Ziegler, V. Zeleny, F. Petrˆu, J. Lazar, Z. Vesel´a, J. Gliwa-Gliwinski, J. Walczuk, E. B´anr´eti, K. Tomanyiczka, International comparisons of He–Ne lasers stabilized with 127I2 at λ ≈ 633 nm (July 1993 to September 1995) Part III: second comparison of Eastern European lasers at λ ≈ 633 nm, Metrologia. 35 (1998), 799–806.

  53. H. Darnedde, W.R. Rowley, F. Bertinetto, Y. Millerioux, H. Haitjema, S. Wetzels, H. Pir´ee, E. Prieto, M. Mar P´erez, B. Vaucher, A. Chartier, J.M. Chartier, International comparisons of He–Ne lasers stabilized with 127I2 at λ ≈ 633 nm (July 1993 to September 1995) Part IV: comparison of Western European lasers at λ ≈ 633 nm, Metrologia. 36 (1999), 199–206.

  54. N. Brown, E. Jaatinen, H. Suh, E. Howick, G. Xu, I. Veldman, A. Chartier, J.M. Chartier, International comparisons of He–Ne lasers stabilized with 127I2 atλ ≈ 633 nm (July 1993 to September 1995) Part V: comparison of Asian-Pacific and South African lasers at λ ≈ 633 nm, Metrologia. 37 (2000), 107–13.

  55. K.P. Birch, M.J. Downs, Correction to the Updated Edlén equation for the refractive index of air, Metrologia. 31 (1994), 315–316. https://doi.org/10.1088/0026-1394/31/4/006.

    Article  ADS  Google Scholar 

  56. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared, Appl. Opt. 35 (1996), 1566–1573. https://doi.org/10.1364/ao.35.001566.

    Article  ADS  Google Scholar 

  57. P.E. Ciddor, R J. Hill, Refractive index of air. 2. Group index, Appl. Opt. 38 (1999), 1663–1667, https://doi.org/10.1364/ao.38.001663.

  58. G. Bönsch, E. Potulski, Measurement of the refractive index of air and comparison with modified Edlen’s formulae, Metrologia. 35 (1998), 133–9. https://doi.org/10.1088/0026-1394/35/2/8.

    Article  ADS  Google Scholar 

  59. T. Doi, K. Toyoda, Y. Tanimura, Effects of phase changes on reflection and their wavelength dependence in optical profilometry, Appl. Opt. 36 (1997), 7157–7161. https://doi.org/10.1364/ao.36.007157.

  60. E.G. Thwaite, Phase correction in the interferometric measurement of end standards, Metrologia. 14 (1978), 53. https://doi.org/10.1088/0026-1394/14/2/002.

    Article  ADS  Google Scholar 

  61. [61] T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology, Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  62. S. Ferreira-Barragáns, M. Mar Pérez-Hernández, B. Samoudi, E. Prieto, Realisation of the metre by optical frequency comb: applications in length metrology, Proc. SPIE 8001, 1–8 (2011).

    Google Scholar 

  63. P. Hariharan, D. Sen, New gauge interferometer, Journal of the Optical Society of America, 49 (3) (1959), 232.

    Article  ADS  Google Scholar 

  64. P. Hariharan, D. Sen,Double-passed two-beam interferometers, Journal of the Optical Society of America, 50(4) (1960), 357.

    Article  ADS  Google Scholar 

  65. K.P. Chaudhary, C. Shakher, K. Shashi Kumar Singh, Measurement of size and spacing of standard wire sieve using an image processing technique and wavelet transform, Mapan, vol 6 (1) (2011), 15–27.

  66. K.P. Chaudhary, G. Moona, R. Sharma, A Comparative study of line scale measurement using laser interferometer and optical profilometry using wavelet transform, NanoScale 2010, Brno, Czech Republic, (2011).

  67. G. Moona, R. Sharma, D. Sharma, V.N. Ojha, Characterization of rockwell hardness indenter tip using image processing and optical profiler and evaluation of measurement uncertainty, Int. J. Metrol. Qual. Eng. 5 (2014), 406.

  68. M. Girija, K. Vinod, J. Mukesh, S. Rina, K. Harish, Measurement uncertainty evaluation using Monte Carlo simulation for newly established line scale calibration facility at CSIR-NPLI, 34 (3) (2019), 325–331.

  69. L. Jingnan, F. Hideo, T. Akihiro, H. Niichi, Y. Jun, U. Yoshiyuki, S. Rina, A.K. Kanjilal, V.T. Chitnis, Precision position control systems using moire signals, IEEE Trans. Instrumentation and Measurement, 44 (1995), 806–808.

  70. P. C. Jain, Weights, measures & dimensional metrology, “techniques for calibration of angle standards, A Pragati Publication, (1997), ISBN -81-755-076-2.

  71. M. Nicklawy1, A.F. Hassan1, M. Bahrawi, F. Niveen, M.S. Arif, Characterizing surface roughness by speckle pattern analysis, Journal of Scientific & Industrial Research. 68 (2009), 118–121.

  72. M. Francon, Laser speckle and applications in optics, Academic press, New York, (1979).

    Google Scholar 

  73. Ensure success with inline-metrology, Prof. Dr.-Ing. Robert Schmitt, Dipl.-Ing. Frank Moenning, XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17–22, 2006, Rio de Janeiro, Brazil.

  74. Y. Bingru, R. David, M. Jody, M. Glen, Thermal compensation for large volume metrology and structures, Int. J. Metrol. Qual. Eng. 8 (21) (2017).

  75. D. K. Aswal, Metrology for inclusive growth of India, Springer, (2020), ISBN 978-981-15-8872-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Jewariya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Moona, G. & Jewariya, M. Progress Towards the Establishment of Various Redefinitions of SI Unit “Metre” at CSIR-National Physical Laboratory- India and its Realization. MAPAN 35, 575–583 (2020). https://doi.org/10.1007/s12647-020-00418-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00418-w

Keywords

Navigation