Skip to main content
Log in

Elastic, Mechanical and Ultrasonic Properties of Nanostructured IIIrd Group Phosphides

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Despite the large number of III–V semiconductor studies reported every year at bulk level, the III–V material characterization at nanoscale is still required to evaluate their potential industrial applications in nanoscale electronic devices, optoelectronic devices, chemical, biosensors, etc. In this work, the non-destructive evaluation-based ultrasonic theoretical approach for the material characterization of nanostructured IIIrd group phosphides, namely indium phosphide (InP), aluminum phosphide (AlP), gallium phosphide (GaP), and boron phosphide (BP) with wurtzite crystal phase, has been reported. The second- and third-order elastic constants (SOECs and TOECs) for IIIrd group phosphides have estimated using the Lennard–Jones potential. The mechanical properties and the ultrasonic investigation of the IIIrd group phosphides materials, e.g., ultrasonic velocities, Grüneisen parameters, acoustic coupling constants, and ultrasonic attenuation, have been performed using the estimated values of SOECs and TOECs. The present investigation indicates that the ultrasonic attenuation of IIIrd group phosphides is influenced by the wave velocities and the chosen material’s thermal conductivity. The other thermophysical parameters like the crystal energy density, the specific heat per unit volume, thermal conductivity, and the Debye temperature of these materials have also been reported at room temperature (300 K). The results indicate that BP is the most robust material and has superior elastic, mechanical, and thermal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Causa, R. Dovesi and C. Roetti, Pseudopotential Hartree–Fock study of seventeen III–V and IV–IV semiconductors, Phys. Rev. B 43(14) (1991) 11937.

    ADS  Google Scholar 

  2. J. Johansson, L.S. Karlsson, C.P.T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson and W. Seifert, Structural properties of <111> B-oriented III–V nanowires, Nat. Mat. 5(7) (2006) 574.

    Google Scholar 

  3. C. Stampfl and C.G. Van de Walle, Density-functional calculations for III–V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B 59(8) (1999) 5521.

  4. Q. Yang, Y. Wu, Y. Liu, C. Pan and Z.L. Wang, Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires, Phys. Chem. Chem. Phys. 16(7) (2014) 2790–2800.

    Google Scholar 

  5. Y. Megdoud, R. Mahdjoubi, M. Amrani, H. Bendjeddou, S. Ghemid, H. Meradji and R. Khenata, Phase stability and physical properties of BAs and BP compounds: an ab-initio study, Comput. Condens. Matter (2019) e00434 (In Press).

  6. S. Daoud, N. Bouarissa, N. Bioud and P.K. Saini, High-temperature and high-pressure thermophysical properties of AlP semiconducting material: a systematic ab-initio study. Chem. Phys. 525 (2019) 110399.

    Google Scholar 

  7. M. Durandurdu, Pressure-induced phase transition of zinc-blende AlN: an ab initio molecular dynamics study, J. Phys. Chem. Solids. 69(11) (2008) 2894–2897.

    ADS  Google Scholar 

  8. J. Ďurišová, D. Pudiš, A. Laurenčíková, J. Novák, Ľ. Šušlik, Reflectance suppression of ZnO coated GaP nanowires, Thin Solid Films. 640 (2017) 88–92.

    ADS  Google Scholar 

  9. G. Otnes, E. Barrigón, C. Sundvall, K.E. Svensson, M. Heurlin, G. Siefer, L. Samuelson, I. Åberg, and M.T. Borgström, Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements, Nano Lett. 18(5) (2018) 3038–3046.

    ADS  Google Scholar 

  10. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert and K.A. Dick, A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow, Nano Lett. 13(9) (2013) 4099–4105.

    ADS  Google Scholar 

  11. F. Glas, J.C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 99(14) (2007) 146101.

    ADS  Google Scholar 

  12. S.Q. Wang and H.Q. Ye, First‐principles study on elastic properties and phase stability of III–V compounds, Phys. Status Solidi B. 240(1) (2003) 45–54.

    ADS  Google Scholar 

  13. R. Ahmed, S.J. Hashemifar and H. Akbarzadeh, First-principles study of the structural and electronic properties of III-phosphides. Physica B Condens. Matter. 403(10–11) (2008) 1876–1881.

    ADS  Google Scholar 

  14. O. Arbouche, B. Belgoumène, B. Soudini, Y. Azzaz, H. Bendaoud and K. Amara, First-principles study on structural properties and phase stability of III-phosphides (BP, GaP, AlP and InP), Comput. Mater. Sci. 47(3) (2010) 685–692.

    Google Scholar 

  15. S. Ehsanfar, F. Kanjouri, H. Tashakori and A. Esmailian, First-principles study of structural, electronic, mechanical, thermal, and phonon properties of III-phosphides (BP, AlP, GaP, and InP), J. Electron. Mater. 46(10) (2017) 6214-6223.

    ADS  Google Scholar 

  16. F. Glas, G. Patriarche and J.C. Harmand, Growth, structure and phase transitions of epitaxial nanowires of III–V semiconductors, J. Phys. Conf. Ser. 209(1) (2010) 012002.

    Google Scholar 

  17. Y. Calahorra, X. Guan, N.N. Halder, M. Smith, S. Cohen, D. Ritter, J. Penuelas and S. Kar-Narayan, Exploring piezoelectric properties of III–V nanowires using piezo-response force microscopy, Semicond. Sci. Technol. 32(7) (2017) 074006.

    ADS  Google Scholar 

  18. S. Bagci and B.G. Yalcin, Structural, mechanical, electronic and optical properties of BBi, BP and their ternary alloys BBi1−x Px, J. Phys. D. 48(47) (2014) 475304.

    Google Scholar 

  19. M. Ustundag, M. Aslan, and B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds, Comput. Mater. Sci. 81 (2014) 471–477.

    Google Scholar 

  20. J.I. Ejembi, I.H. Nwigboji, L. Franklin, Y. Malozovsky, G.L. Zhao, and D. Bagayoko, Ab-initio calculations of electronic, transport, and structural properties of boron phosphide, J. Appl. Phys. 116(10) (2014) 103711.

    ADS  Google Scholar 

  21. R. Yang, C. Zhu, Q. Wei, and D. Zhang, First-principles study on phases of AlP, Solid State Commun. 267 (2017) 23–28.

    ADS  Google Scholar 

  22. A. Baida and M. Ghezali, Structural, electronic and optical properties of InP under pressure: an ab-initio study, Comput. Condens. Matter. 17 (2018) e00333.

    Google Scholar 

  23. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires, Nat. Nanotechnol. 4 (2009) 50–55.

    ADS  Google Scholar 

  24. D. Li, Z. Wang, F. Gao, First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires, Nanotechnology. 21(50) (2010) 505709.

    Google Scholar 

  25. N.N. Halder, A. Kelrich, S. Cohen and D. Ritter, Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy, Nanotechnology 28(46) (2017) 465603.

    ADS  Google Scholar 

  26. O.L. Muskens, S.L. Diedenhofen, B.C. Kaas, R.E. Algra, E.P. Bakkers, J. Gómez Rivas and A. Lagendijk, Large photonic strength of highly tunable resonant nanowire materials, Nano Lett. 9(3) (2009) 930–934.

  27. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P. Bakkers and A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Lett. 8(9) (2008) 2638–2642.

    ADS  Google Scholar 

  28. N.N. Halder, S. Cohen, D. Gershoni and D. Ritter, Growth of large diameter pure phase wurtzite GaP nanowires by a two-step axial-radial growth approach, Appl. Phys. Lett. 112(13) (2018) 133107.

    ADS  Google Scholar 

  29. R. Mohammad, Ş. Katırcıoğlu, Structural stability and electronic properties of different cross-sectional unstrained and rectangular cross-sectional strained GaP nanowires, Int. J. Mod. Phys. B. 33(04) (2019) 1950006.

    ADS  Google Scholar 

  30. C.B. Maliakkal, M. Gokhale, J. Parmar, R.D. Bapat, B.A. Chalke and S. Ghosh, A. Bhattacharya, Growth, structural and optical characterization of wurtzite GaP nanowires, Nanotechnology, 30(25), (2019) 254002.

    ADS  Google Scholar 

  31. J.E. Lennard-Jones, Cohesion, Proc. Phys. Soc. 43(5) (1931) 461.

    ADS  MATH  Google Scholar 

  32. D. Baowan, B.J. Cox, T. A. Hilder, J. M. Hill and N. Thamwattana, Evaluation of Lennard–Jones potential fields in micro and nano technologies modelling and mechanics of carbon-based nanostructured materials, William Andrew Publishing, New York, 2017, 59–86.

    Google Scholar 

  33. R.J. Sadus, Second virial coefficient properties of the n–m Lennard–Jones/Mie potential, Int. J. Chem. Phys. 149(7) (2018) 074504.

    ADS  Google Scholar 

  34. S.O. Pillai, Solid state physics: crystal physics, 7th edn., New Age International Publisher, London (2005).

  35. D. K. Pandey and S. Pandey, Ultrasonics: a technique of material characterization, in “Acoustic waves”, ed. D. W. Dissanayak, Ch. 18, InTech, Rijeka, Croatia (2010) pp. 398–430.

  36. S. Tripathi, R. Agarwal, R. Vashisth, & D. Singh,  (2021). Diameter Dependent Ultrasonic Investigation of SiC Nanowires. In Raj, B. (Ed.), Innovative Applications of Nanowires for Circuit Design (pp. 71-100). IGI Global. https://doi.org/10.4018/978-1-7998-6467-7.ch004.

  37. A. K. Yadav, R. R. Yadav, D. K. Pandey and D. Singh, Ultrasonic study of fission products precipitated in the nuclear fuel, Mat. Lett. 62(17–18) (2008) 3258–3261.

    Google Scholar 

  38. D.K. Pandey, D. Singh and R.R. Yadav, Ultrasonic wave propagation in IIIrd group nitrides, Appl. Acoust. 68(7) (2007) 766–777.

    Google Scholar 

  39. S. Tripathi, R. Agarwal and D. Singh, Size dependent elastic and thermophysical properties of ZnO nanowires, Johnson Matthey Technol. Rev. 63(3) (2019) 166–176.

    Google Scholar 

  40. R. Hill, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11(5) (1963) 357–372.

    ADS  MATH  Google Scholar 

  41. W. Voigt, Lehrbuch der kristallphysik, 962 (1928) Leipzig: Teubner.

  42. A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech. 9 (1929) 49–58.

    Google Scholar 

  43. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367) (1954) 823–843.

  44. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10(11) (2011) 823.

    ADS  Google Scholar 

  45. D. Zagorac, J. Zagorac, M.B. Djukic, D. Jordanov, B. Matović, Theoretical study of AlN mechanical behaviour under high pressure regime, Theor. Appl. Fract. Mec. 103 (2019) 102289.

    Google Scholar 

  46. D.H. Chung and W.R. Buessem, The elastic anisotropy of crystals, J. Appl. Phys. 38(5) (1967) 2010–2012.

    ADS  Google Scholar 

  47. S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101(5) (2008) 055504.

    ADS  Google Scholar 

  48. K. Lau, A.K. McCurdy, Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals, Phys. Rev. B. 58(14) (1998) 8980.

    ADS  Google Scholar 

  49. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Tech. 8(4) (1992) 345–349.

    Google Scholar 

  50. X.Q. Chen, H. Niu, D. Li and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19 (2011) 1275–1281.

    Google Scholar 

  51. M. Born and K. Huang, Dynamical theory of crystal lattices. Clarendon press, Oxford, UK (1954) pp. 420.

    MATH  Google Scholar 

  52. W.P. Mason, Effect of impurities and phonon processes on the ultrasonic attenuation of germanium, crystal quartz, and silicon. In Physical acoustics. Academic Press. III-B (1965) pp. 235–286.

  53. W.P. Mason and T.B. Bateman, Ultrasonic‐wave propagation in pure silicon and germanium, J. Acoust. Soc. Am. 36(4) (1964) 644–652.

    ADS  Google Scholar 

  54. D. E. Gray, American Institute of Physics Handbook, McGraw Hill Book Co. Inc., New York (1981).

    MATH  Google Scholar 

  55. D. Singh, G. Mishra, Rajkumar and R. R. Yadav, Temperature dependence of elastic and ultrasonic properties of sodium borohydride, Commun. Phys. 27 (2017) 151–164.

  56. M. Nandanpawar and S. Rajagopalan, Grüneisen number in hexagonal crystals, J. Acoust. Soc. Am. 71(6) (1982) 1469–1472.

    ADS  Google Scholar 

  57. S. Tripathi, R. Agarwal and D. Singh, Elastic, mechanical and thermal properties of wurtzite BeO Nanowires, J. Pure Appl. Ultrason. 41(2) (2019) 44.

  58. S.Tripathi, R. Agarwal and D. Singh, Size-dependent ultrasonic and thermophysical properties of indium phosphide nanowires, Z. Naturforsch., A: Phys. Sci. 75(4) (2020) 373–380.

  59. D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163 (2003) 67–74.

    Google Scholar 

  60. D. Kriegner, E. Wintersberger, K. Kawaguchi, J. Wallentin, M.T. Borgström and J. Stangl, Unit cell parameters of wurtzite InP nanowires determined by X-ray diffraction, Nanotechnology. 22(42) (2011) 425704.

    Google Scholar 

  61. D. Kriegner, S. Assali, A. Belabbes, T. Etzelstorfer, V. Holý, T. Schülli, F. Bechstedt, E.P. Bakkers, G. Bauer and J. Stangl, Unit cell structure of the wurtzite phase of GaP nanowires: X-ray diffraction studies and density functional theory calculations, Phys. Rev. B. 88 (11) (2013) 115315.

    ADS  Google Scholar 

  62. H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs and A. Tadjer, First‐principles elastic constants and electronic structure of BP, BAs, and BSb, Phys. Status Solidi B. 241(13) (2004) 2881–2885.

    ADS  Google Scholar 

  63. C. Hajlaoui, L. Pedesseau, F. Raouafi, F.B.C. Larbi, J.Even and J.M. Jancu, Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase, J. Exp. Theor. Phys. 121(2) (2015) 246–249.

    ADS  Google Scholar 

  64. Z. Liu, I. Papadimitriou, M. Castillo-Rodríguez, C. Wang, G. Esteban-Manzanares, X. Yuan, H.H. Tan, J.M. Molina-Aldareguia and J. LLorca, Mechanical behavior of InP twinning superlattice nanowires, Nano Lett. 19(7) (2019) 4490–4497.

  65. M. Dunaevskiy, P. Geydt, E. Lähderanta, P. Alekseev, T. Haggrén, J.P. Kakko, H. Jiang and H. Lipsanen, Young’s modulus of wurtzite and zinc blende InP nanowires. Nano Lett. 17(6) (2017) 3441–3446.

    ADS  Google Scholar 

  66. H. Cui, Y. Zhang, Q. Kang, H.M. Chang, X.B. Zhang, R.H. Zhai, and G.Q. Wang, Optik. 177 (2019) 58.

    ADS  Google Scholar 

  67. S.D. Dabhi and P.K. Jha, First-principles study for thermodynamic properties of wurtzite indium pnictides, J. Therm. Anal. Calorim. 124(3) (2016) 1341–1347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S., Agarwal, R. & Singh, D. Elastic, Mechanical and Ultrasonic Properties of Nanostructured IIIrd Group Phosphides. MAPAN 36, 97–107 (2021). https://doi.org/10.1007/s12647-020-00412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00412-2

Keywords

Navigation