The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method

Abstract

The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10−8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10−9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 × 10−6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of-the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. [1]

    The International System of Units (SI), SI Brochure, 9th edition 2019, BIPM, ISBN 978-92-822-2272-0 (https://www.bipm.org/en/publications/si-brochure/).Accessed 12 May 2020.

  2. [2]

    T.C. Liebisch, J. Stenger and J. Ullrich, Understanding the revised SI: background, consequences, and perspectives, Ann. Phys. 1800339 (2019) 1-11.

    Google Scholar 

  3. [3]

    D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H.S. Margolis, E. de Mirandés, P.J. Mohr, F. Nez, K. Pachucki, T.J. Quinn, B.N. Taylor, M. Wang, B.M. Wood and Z. Zhang, The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia 55 (2018) L13-L16.

    Google Scholar 

  4. [4]

    S. Yadav and D. K. Aswal, Redefined SI units and their implications, MAPAN-Journal of Metrology Society of India 35 (2020) 1-9.

    Google Scholar 

  5. [5]

    I. A. Robinson and S. Schlamminger, The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass, Metrologia 53 (2016) A46-A74.

    ADS  Article  Google Scholar 

  6. [6]

    K. Fujii, H. Bettin, P. Becker, E. Massa, O. Rienitz, A. Pramann, A. Nicolaus, N. Kuramoto, I. Busch, and M. Borys, Realization of the kilogram by the XRCD method, Metrologia 53 (2016) A19-A45.

    ADS  Article  Google Scholar 

  7. [7]

    J. Stenger and E. O. Göbel, The silicon route to a primary realization of the new kilogram, Metrologia 49 (2012) L25-L27.

    ADS  Article  Google Scholar 

  8. [8]

    Y. Azuma, P. Barat, G. Bartl, H. Bettin, M. Borys, I. Busch, L. Cibik, G. D’Agostino, K. Fujii, H. Fujimoto, A. Hioki, M. Krumrey, U. Kuetgens, N. Kuramoto, G. Mana, E. Massa, R. Meeß, S. Mizushima, T. Narukawa, A. Nicolaus, A. Pramann, S A Rabb, O Rienitz, C Sasso, M Stock, R D Vocke Jr, A Waseda, S Wundrack and S Zakel, New measurement results for an improved Avogadro constant using a 28Si-enriched crystal, Metrologia 52 (2015) 360-375.

    ADS  Article  Google Scholar 

  9. [9]

    P. Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal, Metrologia 40 (2003) 366-375.

    ADS  Article  Google Scholar 

  10. [10]

    P. Seyfried, P. Becker, A. Kozdon, F. Lüdicke, F. Spieweck, J. Stümpel, H. Wagenbreth, D. Windisch, P. De Bièvre, H. H. Ku, G. Lenaers, T. J. Murphy, H. S. Peiser and S. Valkiers, A determination of the Avogadro constant, Z. Phys. B 87 (1992) 289-298.

    ADS  Article  Google Scholar 

  11. [11]

    P. Becker, H. Bettin, H.-U. Danzebrink, M. Gläser, U. Kuetgens, A. Nicolaus, D. Schiel, P. De Bièvre, S. Valkiers and P. Taylor, Metrologia 40 (2003) 271-287.

    ADS  Article  Google Scholar 

  12. [12]

    P. De Bièvre and S. Valkiers, Molar Mass determinations for NA (Avogadro) projects: present status and potential for the future, Metrologia 31 (1994) 245-249.

    ADS  Article  Google Scholar 

  13. [13]

    K. Fujii, M. Tanaka, Y. Nezu, K. Nakayama, H. Fujimoto, P. De Bièvre, and S. Valkiers, Determination of the Avogadro constant by accurate measurement of the molar volume of a silicon crystal, Metrologia 36 (1999) 455-464.

    ADS  Article  Google Scholar 

  14. [14]

    A. Pramann, K.-S. Lee, J. Noordmann and O. Rienitz, Probing the homogeneity of the isotopic composition and molar mass of the “Avogadro“-crystal, Metrologia 52 (2015) 800-810.

    ADS  Article  Google Scholar 

  15. [15]

    O. Rienitz, A. Pramann and D. Schiel, Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 1 – theoretical derivation and feasibility study, Int. J. Mass Spectrometry 289 (2010) 47-53.

    ADS  Article  Google Scholar 

  16. [16]

    G. Mana and O. Rienitz, The calibration of Si isotope-ratio measurements, Int. J. Mass Spectrometry291 (2010) 55-60.

    ADS  Article  Google Scholar 

  17. [17]

    A. Pramann, T. Narukawa and O. Rienitz, Determination of the isotopic composition and molar mass of a new “Avogadro” crystal: homogeneity and enrichment-related uncertainty reduction, Metrologia 54 (2017) 738-747.

    ADS  Article  Google Scholar 

  18. [18]

    A. Pramann and O. Rienitz, The molar mass of a new enriched silicon crystal: maintaining the realization and dissemination of the kilogram and mole in the new SI, Eur. Phys. J. Appl. Phys. 88 (2019) 20904-p1-p9.

  19. [19]

    G. Bartl, P. Becker, B. Beckhoff, H. Bettin, E. Beyer, M. Borys, I. Busch, L. Cibik, G. D’Agostino, E. Darlatt, M. Di Luzio, K. Fujii, H. Fujimoto, K. Fujita, M. Kolbe, M. Krumrey, N. Kuramoto, E. Massa, M. Mecke, S. Mizushima, M. Müller, T. Narukawa, A. Nicolaus, A. Pramann, D. Rauch, O. Rienitz, C. P. Sasso, A. Stopic, R. Stosch, A. Waseda, S. Wundrack, L. Zhang, and X. W. Zhang, A new 28Si single crystal: counting the atoms for the new kilogram definition. Metrologia 54 (2017) 693-715.

  20. [20]

    D. Knopf, T. Wiedenhöfer, K. Lehrmann and F. Härtig, A quantum of action on a scale? Dissemination of the quantum based kilogram, Metrologia 56 (2019) 1-9.

    Google Scholar 

  21. [21]

    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML 2008 Evaluation of measurement dataGuide to the expression of uncertainty in measurement JCGM 100:2008.

  22. [22]

    J. R. De Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, Atomic weights of the elements: review 2000, Pure Appl. Chem. 75 (2003) 683-800.

  23. [23]

    A. Pramann, O. Rienitz, D. Schiel and B. Güttler, Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 2—Development of an experimental procedure for the determination of the molar mass of silicon using MC-ICP-MS, Int. J. Mass Spectrometry 299 (2011) 78-86.

    ADS  Article  Google Scholar 

  24. [24]

    M. Di Luzio, A. Stopic, G. D’Agostino, J.W. Bennett, G. Mana, M. Oddone and  A. Pramann, Measurement of the 30Si mole fraction in the new Avogadro silicon material by neutron activation and high-resolution γ-spectrometry, Anal. Chem. 89 (2017) 6726-6730.

    Article  Google Scholar 

  25. [25]

    W.J. Huang, G. Audi, Meng Wang, F.G. Kondev, S. Naimi and Xing Xu, The AME2016 atomic mass evaluation, Chinese Physics C, 41, 3 (2017) 030002.

  26. [26]

    J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk and T. Prohaska, Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem, 88, 3 (2016) 265–291.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dorothea Knopf, Frank Härtig, and Jörn Stenger (all from PTB) for stimulating discussions and their supporting interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Axel Pramann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pramann, A., Vogl, J. & Rienitz, O. The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method. MAPAN (2020). https://doi.org/10.1007/s12647-020-00408-y

Download citation

Keywords

  • Silicon
  • Molar mass
  • Isotope ratios
  • SI
  • Kilogram
  • Mole
  • XRCD method