Skip to main content
Log in

Validation of an Improved Optimization Technique for Photovoltaic Modeling

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Particle Swarm Optimization technique has been improved by fractional order calculus to be used for photovoltaic (PV) modeling. The modified technique which is called Fractional Order Darwinian Particle Swarm Optimization (FODPSO) has been constructed to estimate the optimal electrical parameters of PV modules. Single and double diode models have been used to designate the PV modules. FODPSO and PSO algorithms have been designed and applied on two different PV modules at different irradiances and temperatures. In order to validate the proposed modeling technique, Root Mean Square Error (RMSE) of the current, RMSE of power and Summation of the Individual Absolute Error (SIAE) results obtained using FODPSO and traditional Particle Swarm Optimization (PSO) algorithms have been compared. Minimum RMSE and SIAE have been achieved using the FODPSO technique. To verify the FODPSO results accuracy, accurate measurements of short circuit current, open circuit voltage, and maximum power, voltage at maximum power and current at maximum power have been performed for both PV modules. FODPSO-estimated results show excellent agreement with the experimental ones at different irradiances and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.K. Vinod, and S.K. Singh, Solar Photovoltaic Modeling and Simulation: As a Renewable Energy Solution, Energy Rep. 4 (2018) 701–712.

  2. S. Kichou, S. Silvestre, L. Guglielminotti, L. Mora-Lopez and E. Munoz-Ceron, Comparison of Two PV Array Models for the Simulation of PV Systems Using Five Different Algorithms for the Parameters Identification, Renew. Energy, 99 (2016) 270–279.

  3. Chouder, S. Silvestre, N. Sadaoui and L. Rahmani, Modeling and Simulation of a Grid Connected PV System Based on the Evaluation of Main PV Module Parameters, Simul. Model. Pract. Theory, 20 (2012) 46–58.

  4. X. C. Kunjie Yu, X. Wang and Z. Wang, Parameters Identification of Photovoltaic Models Using Self-Adaptive Teaching-Learning-Based Optimization, Energy Convers. Manag. 145 (2017) 233–246.

  5. Saha, N. Agbu, R. Jinks and M. N. Huda, Review Article of the Solar PV Parameters Estimation Using Evolutionary Algorithms, 2(2) (2018) 66–78.

  6. Askarzadeh and A. Rezazadeh, Parameter Identification for Solar Cell Models Using Harmony Search-Based Algorithms, Solar Energy, 86 (2012) 3241–3249.

  7. J. Ma, T. O. Ting, K. L. Man, N. Zhang, S.-U. Guan and A. P. W. H. Wong, Parameter Estimation of Photovoltaic Models via Cuckoo Search, J. Appl. Math. 2 (2013) 1–8.

  8. K. El-Naggar, M. AlRashidi, M. AlHajri and A. Al-Othman, Simulated Annealing Algorithm for Photovoltaic Parameters Identification, Solar Energy, 86 (2012) 266–274.

    Article  ADS  Google Scholar 

  9. M. R. AlRashidi, K. M. El-Naggar and A. M. F. AlHajri, Parameters Estimation of Double Diode Solar Cell Model, Int. J. Electric. Comput. Energ. Electron. Commun. Eng. 7(2) (2013) 118–121.

  10. R. Jordehi, Parameter Estimation of Solar Photovoltaic (PV) Cells: A Review, Renew. Sustain. Energy Rev. 61 (2016) 354–371.

    Article  Google Scholar 

  11. E. S. Pires, J. T. Machado, P. D. M. Oliveira, J. B. Cunha and L. Mendes, Particle Swarm Optimization with Fractional-Order Velocity, Nonlinear Dyn. 61 (2010) 295–301.

  12. M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira and J. A. T. Machado, Introducing the Fractional-Order Darwinian PSO, SIViP, 6 (2012) 343–350.

    Article  Google Scholar 

  13. International Vocabulary of Metrology: Basic and General Concepts and Associated Terms (VIM), JCGM 200 (2012) 2012.

  14. Evaluation of Measurement Data: Guide to the Expression of Uncertainty in Measurement, JCGM 100 (2008) 2008.

  15. M. Boumans, Model-Based Type B Uncertainty Evaluations of Measurement Towards more Objective Evaluation Strategies, Measurement 46(9) (2013) 3775–3777.

    Article  Google Scholar 

  16. R. F. Farrance, Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components Through Functional Relationships, Clin. Biochem. Rev. Aust. Assoc. Clin. Biochem. 33(2) (2012) 49–75.

    Google Scholar 

  17. H. M. Abdel Mageed and F. Q. Alenezi, Traceability of DC and AC High Voltage Measurements Using Voltage Divider Calibration, Int. J. Electric. Eng. Educ. 55(2) (2018) 109–119.

  18. H. M. Abdel Mageed and R. sherif, Adapted Technique for Getting Dividing Ratios for Voltage Dividers of AC High Measuring Systems, MAPAN J. Metrol. Soc. India, Sept. (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala M. Abdel Mageed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mageed, H.M.A., El Maguid Ahmed, W., Mohamed, S. et al. Validation of an Improved Optimization Technique for Photovoltaic Modeling. MAPAN 35, 365–376 (2020). https://doi.org/10.1007/s12647-020-00390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00390-5

Keywords

Navigation