Skip to main content
Log in

Prediction of Liquid Density by Gamma-Ray Measurement for Materials with Low Atomic Number

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

A new method has been developed and evaluated for density measurement of liquid materials based on conventional gamma density meter, whether a low strength gamma radioactive source as the backscatter technique with collimated detector cannot be properly used for density measurement. In this comparative study, proposed method aimed to improve the linearity of the density measurement without using time consuming spectroscopy. Both transmission and backscatter methods for density measurement were used together in a combined model. The whole measurement system was designed, constructed and simulated for nuclear gamma–gamma density measurement. MCNP modeling results were benchmarked with experimental data, showing a good correlation between combined density measurement method and conventional transmission density measurement while values of MRE(%), RMSE and MAE(%) are lower in combined model. This study shows that, MRE(%) in combined model, and for both experimental and simulation results, is improved with the average of about 41% in comparison with the conventional density measurement. Also in this comparative study, RMSE decreased significantly about 56%. Additionally, average MAE (%) reduced about 36%. Furthermore, R-square values were also improved in both experimental and simulation results. Evaluating different methods of nuclear density measurements led us to propose an innovative formula, to investigate an accurate density measurement. This paper discusses advantages of proposed model in comparison with the conventional transmission method for gamma interaction with lower percentage errors and better calibration curve fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Monte Carlo N-Particle code.

  2. Mean Relative Error.

  3. Root Mean Square Error.

  4. Mean Absolute Error.

References

  1. J. S. Charlton, J. A. Heslop and P. Johnson, Industrial applications of radioisotopes, Phys. Technol., 6(2) (1975) 67.

    Article  ADS  Google Scholar 

  2. IAEA-TECDOC-1459, ISBN 92-0-107805-6, 2005.

  3. M. Khorsandi and S. A. H. Feghhi, Design and construction of a prototype gamma-ray densitometer for petroleum products monitoring applications, Measurement, 44(9) (2011) 1512–1515.

    Article  Google Scholar 

  4. R. B. J. Palmer, Nucleonic instrumentation applied to the measurement of physical parameters by means of ionising radiation, J. Phys. E: Sci. Instrum., 15(9) (1982) 873.

    Article  ADS  Google Scholar 

  5. H. L. TrÌnh, H. C. Le, T. V. Chau, et al., Geant 4 study of concrete density measurement using gamma backscattering technique, Int. J. Res. Eng. Sci., 4 (2016) 52–58.

    Article  Google Scholar 

  6. H. D. Tam and N. T. M. Le, An improved method for liquid density measurement using NaI(Tl) detector and low-strength source, J. Radioanal. Nucl. Chem., 317 (2018) 161–168.

    Article  Google Scholar 

  7. I, Peivaste and G. Alahyarizadeh, Comparative Study on Absorbed Dose Distribution of Potato and Onion in X-ray and Electron Beam System by MCNPX2.6 Code, MAPAN-J. Metrol. Soc India, 34 (2019) 19–29.

  8. E. Nazemi, M. Aminipour, A. Olfateh, S. M. Golgoun, M. R. Davarpanah, Proposing an intelligent approach for measuring the thickness of metal sheets independent of alloy type, Appl. Radiat. Isotopes, 149 (2019) 65–74.

    Article  Google Scholar 

  9. O. M. Isinkaye, S. Adeleke, D. A. Isah, Background Radiation Measurement and the Assessment of Radiological Impacts due to Natural Radioactivity Around Itakpe Iron-Ore Mines, MAPAN-J. Metrol. Soc India, 33 (2018) 271–280.

    Google Scholar 

  10. M. Zych, R. Hanus, B. Wilk, L. Petryka, D, Świsulski, Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows, Measurement, 129 (2018) 285–295.

    Article  Google Scholar 

  11. C. E. Moss, A. Favalli, J. M. God, K. D. Ianakiev, M. Lombardi, C. W. McCluskey, M.T. Paffett and M. T. Swinhoe, New technology for transmission measurements in process pipes, Appl. Radiat. Isotopes, 72 (2013) 89–95.

    Article  Google Scholar 

  12. G. Knoll, Radiation Detection and Measurement, Third edition, New York: Wiley, 2000.

    Google Scholar 

  13. D. Sardari, A. Abbaspour, S. Baradaran and F. Babapour Mofrad, Estimation of gamma- and x-ray photons; buildup factor in soft tissue with Monte Carlo method, Appl. Radiat. Isotopes, 67(7) (2009) 1438–1440.

  14. H. Cember and E. Johnson, Introduction to Health Physics, Fourth edition, New York: McGraw-Hill Companies, Inc., 2009.

    Google Scholar 

  15. S. M. Golgoun, D. Sardari, M. Sadeghi and F. Babapour Mofrad, Appl. Radiat. Isotopes, 118 (2016) 246–250.

  16. N. Tsoulfanidis and S. Landsberger, Measurement and Detection of Radiation, 3rd edn, CRC press Taylor and Francis Group, New York 2010.

    Book  Google Scholar 

  17. R. P. Gardner, W. L. Dunn and F. H. McDougall, A quality factor concept for evaluation of the surface type gamma-ray backscatter soil density gauges, Nucl. Eng. Des., 16(4) (1971) 399–407.

    Article  Google Scholar 

  18. M. Luycx and C. Torres-Verdín, Physics, applications, and limitations of borehole neutron-gamma density measurements, Geophysics, 84 (2019).

  19. Y. Yano, N. Zushi, F. Sato, Y. Kato and T. Iida, Development of face-type double NaI(Tl) scintillation detector system for measurement of radioactive-cesium concentration. Radiat. Saf. Manag., 14 (2015) 1–8.

    Article  Google Scholar 

  20. P. K. Dubey, S. L. Jain, B. C. Arya, P. S. Kulkarni, Discriminator threshold selection logic to improve signal to noise ratio in photon counting, MAPAN-J. Metrol. Soc India, 25 (2010) 63–70.

  21. A. Tondon, M. Singh, B. S. Sandhu, B. Singh, A Compton scattering technique for concentration and fluid-fluid interface measurements using NaI(Tl) detector, Nucl. Instrum. Methods B, 403 (2017) 21–27.

    Article  ADS  Google Scholar 

  22. R. K. Kapri, K. Rathore, P. K. Dubey, R. Mehrotra, P. Sharma, Optimization of Control Parameters of PMT-Based Photon Counting System, MAPAN-J. Metrol. Soc India, (2019).

  23. G. H. Roshani, E. Nazemi,F. Shama, Utilizing Features Extracted from Registered 60Co Gamma-Ray Spectrum in One Detector as Inputs of Artificial Neural Network for Independent Flow Regime Void Fraction Prediction, MAPAN-J. Metrol. Soc India, 34 (2019) 189–196.

    Google Scholar 

  24. J. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport Code, 2000.

  25. E. R. Van der Graaf, J. Limburg, R. L. Koomans and M. Tijs, Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements, J. Environ. Radioact., 102 (January 2011) 270–282.

    Article  Google Scholar 

  26. C. M. Salgado, L. E. B. Brandão, C. C. Conti, W. L. Salgado, Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isotopes, 116 (2016) 143–149.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate financial support of Pars Isotope Co. Also we would like to express our gratitude to Mr. Davarpanah, Dr. Hosntalab, Dr. Kamali-Asl and Dr. Mohammadzadeh for their support and instructions. Also, we appreciate kind and sincere help of A. R. Mazochi, M. Aminipor, A. Shabani, M. Ebrahimi Shohani, R. Maghsoudi, A. Olfateh, S. M. Taheri, M. H. Raoufi, Mrs. E. Raoufi and Ms. Alizadeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sardari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golgoun, S.M., Sardari, D., Sadeghi, M. et al. Prediction of Liquid Density by Gamma-Ray Measurement for Materials with Low Atomic Number. MAPAN 35, 351–357 (2020). https://doi.org/10.1007/s12647-020-00373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00373-6

Keywords

Navigation