Skip to main content
Log in

Seasonal and Spatial Variation of Particulate Aerosols and Carbonaceous Species in PM2.5 in the Periphery of Chandigarh, India

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Present study highlights the seasonal and spatial variation of particulate aerosols (PM10 and PM2.5) and carbonaceous species (organic tarry matter, organic and elemental carbon) in PM2.5. The ambient air samples for particulate aerosols were collected from tricity of Chandigarh, Mohali and Panchkula in India during summer (April’15–May’15) and winter (December’15–January’16). The mass levels of particulate aerosols and carbonaceous species show significant variation both seasonally and spatially. Average mass levels reported as higher in winter than summer were attributed to stagnant atmospheric and poor dispersion conditions. The mass levels were also found to be higher in industrial area as compared to residential and commercial areas. Average mass levels varying from 107.6 to 137.8 µg m−3 for PM10 and 46.6–59.5 µg m−3 for PM2.5 during the study period indicate alarming situation of particulate aerosols in this tricity. Carbonaceous species contributing as 42.5–47.5% OTM, 25.4–29.9% OC and 3.4–4.7% EC in PM2.5 indicate larger in fraction at all sites during both summer and winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Shi, Y. Ji, H. Sun, J. Hu, Y. Wu, J. Fang, J. Lin, J. Wang, H. Duan and M. Lanz, Nano scale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles, Sci. Rep., 5 (2015) 1–10.

    Google Scholar 

  2. M. Moustafa, A. Mohamed, A. R. Ahmed and H. Nazmy, Mass size distributions of elemental aerosols in industrial area, J. Adv. Res., 6 (2015) 827–832.

    Article  Google Scholar 

  3. S. Margiotta, A. Lettino, A. Speranza and V. Summa, PM1 geochemical and mineralogical characterization using sem-edx to identify particle origin – Agri valley pilot area, Basilicata, southern Italy, Nat. Hazards Earth Syst. Sci., 15 (2015) 155–1561.

    Article  Google Scholar 

  4. A. J. Elliot, S. Smith, A. Dobney, J. Thornes, G. E. Smith and S. Vardoulakis, Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis, Environ. Pollut., 214 (2016) 903–911.

    Article  Google Scholar 

  5. J. Ren, B. Li, D. Yu, J. Liu and Z. Ma, Approaches to prevent the patients with chronic airway diseases from exacerbation in the haze weather, J. Thoracic Disease 8 (2016) E1–E7.

    Article  Google Scholar 

  6. G. Q. Tang, P. S. Zhao, Y. H. Wang, W. K.Gao, M. T. Cheng, J. Y. Xin, X. Li and Y. S. Wang, Mortality and air pollution in Beijing: The long-term relationship, Atmos. Environ., 150 (2016) 238–243.

    Article  ADS  Google Scholar 

  7. R. Wu, H. C. Dai, Y. Geng, Y. Xie, T. Masui, Z. Q. Liu and Y. Y. Qian, Economic impacts from PM2.5 pollution-related health effects: A case study in Shanghai, Environ. Sci. Technol., 51(9) (2017) 5035–5042.

    Article  ADS  Google Scholar 

  8. A. Awasthi, R. Agarwal, S. K. Mittal, N. Singh, K. Singh and P. K. Gupta, Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India, J. Environ. Monit., 13 (2011) 1073–181.

    Article  Google Scholar 

  9. G. Xu, L. Jiao, B. Zhang, S. Zhao, M. Yuan, Y. Gu, J. Liu and X. Tang, Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China, Aerosol Air Qual. Res., 17 (2017) 741–751.

    Google Scholar 

  10. R. Singh and B. S. Sharma, Composition, seasonal variation, and sources of PM10 from world heritage site TajMahal, Agra, Environ. Monit. Assess., 184(10) (2012) 5945–5956.

    Article  Google Scholar 

  11. R. Yadav, L. K. Sahu, S. N. A. Jaaffrey and G. Beig, Temporal variation of particulate matter (PM) and potential sources at an urban site of Udaipur in Western India, Aerosol Air Qual. Res., 14 (2014) 1613–1629.

    Article  Google Scholar 

  12. T. Chen, J. He, X. Lu, J. She and Z. Guan, Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the area of Nanjing, China, Int. J. Environ. Res. Public Health, 13 (2016) 921. https://doi.org/10.3390/ijerph13090921.

    Article  Google Scholar 

  13. Y. Q. Wang, X. Y. Zhang, J. Y. Sun, X. C. Zhang, H. Z. Che and Y. Li, Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China, Atmos. Chem. Phys., 15 (2015) 13585–13598.

    Article  ADS  Google Scholar 

  14. A. S. Modaihsh, F. N. Al-Barakah, M. E. A. Nadeem and M. O. Mahjoub, Spatial and temporal variations of the particulate matter in Riyadh City, Saudi Arabia, J. Environ. Prot., 6 (2015) 1293–1307.

    Article  Google Scholar 

  15. W. Cai, K. Li, H. Liao, H. Wang and L. Wu, Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Change Press, (2017). https://doi.org/10.1038/NCLIMATE3249.

    Google Scholar 

  16. S. Guo, M. Hu, M. L. Zamora, J. Peng, D. Shang, J. Zheng, Z. Du, Z. Wu, M. Shao, L. Zeng, M. J. Molina and R. Zhang, Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci. U. S. A., 111(49) (2014) 17373–17378. https://doi.org/10.1073/pnas.1419604111.

    Article  ADS  Google Scholar 

  17. W. Y. Xu, C. S. Zhao, L. Ran, Z. Z. Deng, P. F. Liu, N. Ma, W. L. Lin, X. B. Xu, P. Yan, X. He, J. Yu, W. D. Liang and L. L. Chen, Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North China Plain, Atmos. Chem. Phys., 11(9) (2011) 4353–4369.

    Article  ADS  Google Scholar 

  18. A. Waheed, X. Li, M. Tan, L. Bao, J. Liu, Y. Zhang, G. Zhang and Y. Li, Size distribution and sources of trace metals in ultrafine/fine/coarse airborne particles in the atmosphere of Shanghai, Aerosol Sci. Technol., 45 (2011) 163–171.

    Article  ADS  Google Scholar 

  19. W. Hu, M. Hu, W. Hui, J. L. Jimenez, B. Yuan, W. Chen, M. Wang, Y. Wu, C. Chen, Z. Wang, J. Peng, L. Zeng and M. Shao, Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter, J. Geophys. Res. Atmos., 121(4) (2016) 1955–1977.

    Article  ADS  Google Scholar 

  20. I. F. Al-Momani and W. M. Shatnawi, Chemical characterization and source determination of trace elements in PM2.5 and PM10 from an urban area, northern Jordan, Int. J. Environ. Monit. Anal., 5(4) (2017) 103–108.

    Google Scholar 

  21. R. K. Pathak, T. Wang, K. F. Ho and S. C. Lee, Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water soluble organic carbon (WSOC), Atmos. Environ., 45 (2011) 318–325.

    Article  ADS  Google Scholar 

  22. J. Tao, L. M. Zhang, J. J. Cao, S. C. Hsu, X. G. Xia, Z. Zhang, Z. J. Lin, T. T. Cheng and R. J. Zhang, Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China, Atmos. Environ., 95 (2014) 552–562.

    Article  ADS  Google Scholar 

  23. J. Brito, L. V. Rizzo, P. Herckes, P. C. Vasconcellos, S. E. S. Caumo, A. Fornaro, R. Y. Ynoue, P. Artaxo, and M. F. Andrade, Physical-chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area, Atmos. Chem. Phys., 13 (2013) 12199–12213.

    Article  ADS  Google Scholar 

  24. F. Cavalli, M. Viana, K. E. Yttri, J. Genberg and J. P. Putaud, Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3 (2010) 79–89.

    Article  Google Scholar 

  25. T. Pachauri, R. K. Saraswat, V. Singla, A. Lakhani and M. K. Kumari, Characterization of organic and elemental carbon in PM2.5 aerosols at Agra, India, Res. J. Recent Sci., 2 (2013) 255–260.

    Google Scholar 

  26. P. Hegde, K. Kawamura, H. Joshi and M. Naja, Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition, Environ. Sci. Pollut. Res., 23(7) (2016) 6102–6118.

    Article  Google Scholar 

  27. X. Huang, Z. Liu, J. Liu, B. Hu, T. Wen, J. Zhang, F. Wu, D. Ji, L. Wang, Y. Wang and G. Tang, Chemical characterization and synergetic source apportionment of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region, China, Atmos. Chem. Phys. Discuss., (2017). https://doi.org/10.5194/acp-2017-446.

    Google Scholar 

  28. J. H. Murillo, S. R. Roman, J. F. R. Marín and B. Cardenas, Source apportionment of PM2.5 in the metropolitan area of Costa Rica using receptor models, Atmos. Clim. Sci., 3 (2013) 562–575.

    Google Scholar 

  29. E. Samoli, R. Peng, T. Ramsay, M. Pipikou, G. Touloumi, F. Dominici, R. Burnett, A. Cohen, D. Krewski, J. Samet and K. Katsouyanni, Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA Study, Environ. Health Perspect., 116(11) (2008) 1480–1486.

    Article  Google Scholar 

  30. C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Am. Med. Assoc., 287(9) (2002) 1132–1141.

    Article  Google Scholar 

  31. R. Beelen, G. Hoek, P. A. van den Brandt, R. A. Goldbohm, P. Fischer, L. J. Schouten, M. Jerrett, E. Hughes, B. Armstrong and B. Brunekreef, Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR Study), Environ. Health Perspect., 116(2) (2008) 196–202.

    Article  Google Scholar 

  32. D. Krewski, M. Jerrett, R. T. Burnett, R. Ma, E. Hughes, Y. Shi, M. C. Turner, C. A. Pope III, G. Thurston, E. E. Calle, M. J. Thun, B. Beckerman, P. DeLuca, N. Finkelstein, K. Ito, D. K. Moore, K. B. Newbold, T. Ramsay, Z. Ross, H. Shin and B. Tempalski, Extended follow-up and spatial analysis of the American Cancer Society linking particulate air pollution and mortality: Research Report, Health Eff. Inst., 140 (2009) 5–114; discussion 115-36.

  33. S. K. Lohan, H. S. Jat, A. K. Yadav, H. S. Sidhu, M. L. Jat, M. Choudhary, J. K. Peter and P. C. Sharma, Burning issues of paddy residue management in north-west states of India, Renew. Sustain. Energy Rev., 81 (2018) 693–706.

    Article  Google Scholar 

  34. S. Gupta, S. K. Mittal and R. Agarwal, Respiratory health of school children in relation to their body mass index (BMI) during crop residue burning events in North Western India, MAPAN-J. Metrol. Soc India, (2017) 1–10. https://doi.org/10.1007/s12647-017-0245-1.

  35. S. Gupta, R. Agarwal and S. K. Mittal, Respiratory health concerns in children at some strategic locations from high PM levels during crop residue burning episodes, Atmos. Environ., 137 (2016) 127–134.

    Article  ADS  Google Scholar 

  36. L. T. Wang, J. Xu, J. Yang, X. J. Zhao, W. Wei, D. D. Cheng, X. M. Pan and J. Su, Understanding haze pollution over the southern Hebei area of China using the CMAQ model, Atmos. Environ., 56 (2012) 69–79.

    Article  ADS  Google Scholar 

  37. A. Chakraborty and T. Gupta, Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. India, Aerosol Air Qual. Res., 10 (2010) 433–445.

    Article  Google Scholar 

  38. G. Q. Tang, J. Q. Zhang, X. W. Zhu, T. Song, C. Münkel, B. Hu, K. Schäfer, Z. Liu, J. K. Zhang, L. L. Wang, J. Y. Xin, P. Suppan and Y. S. Wang, Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16(4) (2016) 2459–2475.

    Article  ADS  Google Scholar 

  39. M. Bressi, J. Sciare, V. Ghersi, N. Bonnaire, J. B. Nicolas, J. E. Petit, S. Moukhtar, A. Rosso, N. Mihalopoulos and A. Féron, A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France), Atmos. Chem. Phys., 13(15) (2013) 7825–7844.

    Article  ADS  Google Scholar 

  40. B. Zhao, P. Wang, J. Z. Ma, S. Zhu, A. Pozzer and W. Li, A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12(1) (2012) 481–501.

    Article  ADS  Google Scholar 

  41. L. X. Yang, X. H. Zhou, Z. Wang, Y. Zhou, S. H. Cheng, P. J. Xu, X. M. Gao, W. Nie, X. F. Wang and W. X. Wang, Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment, Atmos. Environ., 55 (2012) 506–514.

    Article  ADS  Google Scholar 

  42. P. S. Zhao, F. Dong, D. He, X. J. Zhao, X. L. Zhang, W. Z. Zhang, Q. Yao and H. Y. Liu, Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13(9) (2013) 4631–4644.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. S. N. Tripathi of IIT, Kanpur for technical and instrumental support. We extend sincere thanks to the team of Eco Laboratories, Mohali (Punjab) for assisting in field sampling and providing meteorological data of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Thakur, D., Singh, R. et al. Seasonal and Spatial Variation of Particulate Aerosols and Carbonaceous Species in PM2.5 in the Periphery of Chandigarh, India. MAPAN 34, 217–224 (2019). https://doi.org/10.1007/s12647-018-0280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-018-0280-6

Keywords

Navigation