Skip to main content
Log in

A Comparative Study for Material Selection of Sensor Element Using Analytic Hierarchy Process

  • Case Report
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Material selection is crucial for sensor elements. Because of the numerous material alternatives available in the market, systematic methods must be employed to select the most suitable sensor material that satisfies technical, metrological and economic criteria. In this study, analytic hierarchy process (AHP) is employed for the selection of sensor material. Twenty common materials are classified in three groups according to their elasticity modulus, and then the best sensor material in each group is determined then the AHP rankings of the materials are calculated. The results show that AISI 4340 steel and CuBe alloy are the most suitable materials within the high- and lower-modulus groups, respectively, and Ni-Span-C is another good alternative sensor element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. A Measurements Group Strain & Smart Hypertext. “Strain Gage Based Transducers.” n.d. http://www.measurementsgroup.com/guide/ta/sgbt/sgbtndex.htm (accessed 2 15, 2001).

  2. R. Aravamudhan, Materials selection and applications in mechanical engineering; Industrial Press, Inc., New York, (2006).

    Google Scholar 

  3. M.F. Ashby, Materials selection in mechanical design, 4th ed; Butterworth-Heinemann, Burlington, (2011).

    Google Scholar 

  4. ASM, ASM handbook: Volume 1; ASM International, USA, (1991).

  5. ASM Handbook: Volume 2; handbook committee, USA, (1990).

  6. B. Aydemir, L. Yagmur and S. Fank, Hysteresis errors of commonly used sensor materials. Measurement 43 (2010) 792–796.

    Article  Google Scholar 

  7. G.E. Dieter, Materials selection and design (Volume 20); ASM International, USA (1997).

    Google Scholar 

  8. K.L., Edwards, Selecting materials for optimum use in engineering components. Mater. Des. 26 (2005) 469–473.

    Article  Google Scholar 

  9. M.M. Farag, Materials and process selection for engineering design, 3rd ed.; CRC Press, FL (2014).

    Google Scholar 

  10. J. Franeka and A. Krestaa. “Judgment scales and consistency measure in AHP. Proc. Econ. Finance 12 (2014) 164–173.

    Article  Google Scholar 

  11. Y. Huang, Y. Yang, X. Lian and Q. Hao, Method research on energy evaluation of thermal power based on AHP and entropy of the TOPSIS. 2nd Conference on environmental science and information application technology. Wuhan, China, 2010.

  12. A. Jahan, F Mustapha, Y. Ismail, S. M. Sapuan and M. Bahraminasab, A comprehensive VIKOR method for material selection. Mater. Des. 32 (2011) 1215–1221.

    Article  Google Scholar 

  13. A. Jahan, M. Bahraminasab and K. L. Edwards, A target-based normalization technique for materials selection. Mater. Des. 35 (2012) 647–654.

    Article  Google Scholar 

  14. D.H. Jee and K.J. Kang, A method for optimal material selection aided with decision making theory. Mater. Des. 21 (2000) 199–206.

    Article  Google Scholar 

  15. W.l. Lee, and T.T. Su, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J. Mater. Process. Technol. 87 (1999) 198–206.

    Article  ADS  Google Scholar 

  16. A. Maleque and M.S. Salit, Materials selection and design; Springer, Singapore, (2013).

    Book  Google Scholar 

  17. K. Myer, Handbook of materials selection; Wiley, New York, (2002).

    Google Scholar 

  18. “Ni-Span-C-Alloy.” n.d. http://www.specialmetals.com/assets/documents/alloys/other/ni-span-c-alloy-902.pdf (accessed 12 10, 2015).

  19. V. Omkarprasad and S. Kumar, Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169 (2006) 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  20. T.L. Saaty, Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1) (2008) 83–98.

    MathSciNet  Google Scholar 

  21. T.L. Saaty, Highlights and critical points in the theory and application of the analytic hierarchy process. Eur. J. Oper. Res. 74 (1994) 426–447.

    Article  ADS  MATH  Google Scholar 

  22. T.L. Saaty, How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48 (1990) 9–26.

    Article  MATH  Google Scholar 

  23. Saaty TL, The analytic hierarchy process—what it is and how it is used. Math. Modell. 9(3-5) (1987) 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Sandstrom, An approach to systematic materials selection. Mater. Des. 6 (1985) 328–338.

    Article  Google Scholar 

  25. S.M. Sapuan, A knowledge-based system for materials selection in mechanical engineering design. Mater. Des. 22 (2001) 687–695.

    Article  Google Scholar 

  26. W. Sha and Z. Guo, Maraging steels; CRC Press, Washington, DC, (2009).

    Book  Google Scholar 

  27. S. Shuib, A. Jahan, Y. Ismail, S. Shuib, D. Norfazidah and K.L. Edwards, An aggregation technique for optimal decision-making in materials selection. Mater. Des. 32 (2011) 4918–4924.

    Article  Google Scholar 

  28. E.W. Stein, A comprehensive multi-criteria model to rank electric energy production technologies. Renew. Sustain. Energy Rev. 22 (2013) 640–654.

    Article  Google Scholar 

  29. A. Suebsomran and S. Talabgeaw, Critical maintenance of thermal power plant using the combination of failure mode effect analysis and AHP approches. AIJSTPME 3(3) (2010) 1–6.

    Google Scholar 

  30. L.T. Warren, Two interval type 2 fuzzy TOPSIS material selection methods. Mater. Des. 88 (2015) 1088–1099.

    Article  Google Scholar 

  31. L. Yagmur. Effect of microstructure on internal friction and Young’s modulus of aged Cu–Be. Mater. Sci. Eng. A 523 (2009) 65–69.

    Article  Google Scholar 

  32. L. Yagmur, Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process). Energy 94 (2016) 476482.

    Article  Google Scholar 

  33. L. Yagmur, O. Duygulu and B. Aydemir, Investigation of metastable gamma prime precipitate using HRTEM in aged Cu–Be alloy. Mater. Sci. Eng. A 528 (2011) 4147–4151.

    Article  Google Scholar 

  34. L. Yagmur, S. Fank and B. Aydemir, Effect of microstructure on modulus loss at flexural mode and stress in sensor materials. Sens. Actuators A 136 (2007) 261–266.

    Article  Google Scholar 

  35. L. Yagmur, T. Gulmez, F. Hacizade and S. Kacmaz, A new inverted pendulum to determine anelastic behavior of metals: design and characterization. Rev. Sci. Instrum. 76(093903) (2005) 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Yagmur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagmur, L., Aydemir, B. A Comparative Study for Material Selection of Sensor Element Using Analytic Hierarchy Process. MAPAN 33, 459–468 (2018). https://doi.org/10.1007/s12647-018-0274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-018-0274-4

Keywords

Navigation