Skip to main content
Log in

A theoretical and experimental investigation of spatial distribution of radon in a typical ventilated room

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript


The aim of this work is to studying indoor radon distribution using the Finite Volume Method (FVM). This paper focuses on effects of exhalation from different sources (wall, floor and ceiling) and the ventilation profile on distribution the concentrations of radon indoor. The rate of radon exhalation and ventilation were measured and are used as input in FVM simulation. It has been found that the radon concentration is distributed in non homogeneous way in the room. The radon concentration is much larger near floor, and decreases in the middle of the room. The experimental validation was performed by measuring radon concentration at different locations in room using active and passive techniques. We notice that the results of simulation and experimental are in agreement. The annual effective dose of radon in the model room has been also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. F. Steinhausler, Environmental 220Rn: a review, Enviro. Intern., 22 (1996) 1111–1123.

    Article  Google Scholar 

  2. Q. Guo, J. Sun and W. Zhuo, Potential of high thoron exposure in China, J. Nucl. Sci. Technol., 37 (2000) 716–719.

    Article  Google Scholar 

  3. K.K. Dwivedi, R. Mishra, S.P. Tripathy, A. Kulshreshtha, D. Sinha, A. Srivastava, P. Deka, B. Bhattacharjee, T.V. Ramachandran and K.S.V. Nambi, Simultaneous determination of radon, thoron and their progeny in dwellings, Rad. Meas., 33 (2001) 7–11.

    Article  Google Scholar 

  4. S. Singh, A. Kumar and B. Singh, Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India. Enviro. Int., 28 (2002) 97–101.

    Google Scholar 

  5. T. Iyogi, S. Ueda, S. Hisamatsu, K. Kondo, N. Sakurai and J. Inaba, Radon concentration in indoor occupational environments in Aomori Prefecture, Japan, J. Enviro. Radioact., 67 (2003) 91–108.

    Article  Google Scholar 

  6. M.H. Magalhaes, E.C.S. Amaral, I. Sachett and E.R.R. Rochedo, Radon-222 in Brazil: an outline of indoor and outdoor measurements, J. Enviro. Radioact., 67 (2003) 131–143.

    Article  Google Scholar 

  7. R.S. Saini, M. Nain, R.P. Chauhan, N. Kishore and S.K. Chakarvarti, Radon, thoron and their progeny levels in some dwellings of northern Haryana, India using SSNTDs, India. J. Phys., 83 (2009) 1197–1200.

    Article  ADS  Google Scholar 

  8. R.W. Field, D.J. Steck, B.J. Smith, C.P. Brus, E.F. Fisher, J.S. Neuberger, C.E. Platz, R.A. Robinson, R.F. Woolson and C.F. Lynch, Residential radon gas exposure and lung cancer, Am. J. Epidemiol., 151 (2000) 1091–1102.

    Article  Google Scholar 

  9. J. Ma, H. Yonehara, T. Aoyama, M. Doi, S. Kobayashi and M. Sakanoue, Influence of air flow on the behaviour of thoron and its progeny in a traditional Japanese house, Health Phys., 72 (1997) 86–91.

    Article  Google Scholar 

  10. [10] W. Jacobi, Activity and Potential Alpha-energy of 222Radon and 220Radon-daughters in Different Air Atmospheres, Health Phys., 22 (1972) 429–507.

    Article  Google Scholar 

  11. J. Postendorfer, A. Wicke and A. Schraub, The influence of exhalation, ventilation and deposition processes upon the concentration of radon (222Rn), thoron (220Rn) and their decay products in room air, Health Phys., 34 (1978) 419–477.

    Article  Google Scholar 

  12. A. Katase, Y. Matsumoto, T. Sakae and K. Ishibashi, Indoor concentrations of 220Rn and its decay products, Health Phys., 54 (1988) 249–344.

    Article  Google Scholar 

  13. T. Yamasaki, Q. Guo and T. Iida, Distributions of thoron progeny concentrations in Dwellings, Radiat. Prot. Dosim., 59 (1995) 135–140.

    Article  Google Scholar 

  14. H.M. Mok, Perturbative method in the indoor radon/thoron concentration study, Radiat. Prot. Dosim., 67 (1996) 65–70.

    Article  Google Scholar 

  15. S. Kato, Appliance of CFDS technique for designing room air distribution—Part 1. Overview of CFD for analyzing indoor climate, Soci. Heat. Air Condi. & Sani. Eng. Jap., 71 (1997) 533–542.

  16. W. Zhuo, T. Iida, J. Moriizumi, T. Aoyagi and I. Takahashi, Simulation of the concentrations and distributions of indoor radon and thoron, Radiat. Prot. Dosim., 93 (2001) 357–367.

    Article  Google Scholar 

  17. V. Urosevic, D. Nikezic and S. Vulovic, A theoretical approach to indoor radon and thoron distribution, J. Enviro. Radioact., 99 (2008) 1829–1833.

    Article  Google Scholar 

  18. L. Oufni and M.A. Misdaq, Radon emanation in a limestone cave using CR-39 and LR-115 solid state nuclear track detectors, J. Radio. Anal. Nucl. Chem., 250 (2001) 309–313.

  19. L. Oufni, M.A. Misdaq, M. Amrane, Radon level and radon effective dose rate determination in Moroccan dwellings using SSNTDs, Rad. Meas., 40 (2005) 118–123.

    Article  Google Scholar 

  20. L. Oufni, Determination of the radon diffusion coefficient and radon exhalation rate in Moroccan quaternary samples using the SSNTD technique, J.Radio. Anal. Nucl. Chem, 256 (2003) 581–586.

  21. L. Oufni, S. Taj, B. Manaut and M. Eddouks, Transfer of uranium and thorium from soil to different parts of medicinal plants using SSNTD, J. Radio. Anal. Nucl. Chem., 287 (2011) 403–410.

    Article  Google Scholar 

  22. G. de With and P. de Jong, CFD modelling of thoron and thoron progeny in the indoor environment, Radiat. Prot. Dosim., 145 (2011) 138–144.

    Article  Google Scholar 

  23. N. Chauhan, R.P. Chauhan, M. Joshi, T.K. Agarwal, P. Aggarwal and B.K.J. Sahoo, Study of indoor radon distribution using measurements and CFD modeling, Enviro. Radioact., 136 (2014) 105–111.

    Article  Google Scholar 

  24. K. Akbari, J. Mahmoudi and M. Ghanbari, Influence of indoor air conditions on radon concentration in a detached house, J. Enviro. Radioact., 116 (2013) 166–173.

    Article  Google Scholar 

  25. H. Elharfi, M. Naïmi, M. Lamsaadi, A. Raji and M. Hasnaoui, Inter. Schol. Res. Net., 2012 (2012) 16.

    Google Scholar 

  26. R. Rabi, L. Oufni,. A theoretical investigation of the distribution of indoor radon concentrations, Indian J. Phys., 91 (2017) 471–479.

    Article  ADS  Google Scholar 

  27. J.A. Rabi and A.A. Mohamad, Parametric modelling and numerical simulation of natural-convective transport of radon-222 from a phosphogypsum stack into open air, Appl. Math. Mod., 30 (2006) 1546–1560.

    Article  MATH  Google Scholar 

  28. A. Kumar, R.P. Chauhan, J. Manish and B.K. Sahoo, Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements, J. Enviro. Radioact., 127 (2014) 50–55.

    Article  Google Scholar 

  29. J. Porestendorfer, Properties and behaviour of radon and thoron and their decay products in the air, J. Aerosol. Sci., 25 (1994) 219–263.

    Article  ADS  Google Scholar 

  30. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly with Scientific Annexes. United Nations Publication, New York, USA, (2000).

  31. (ICRP) (International Commission on Radiological Protection) (1993) Protection against radon at home and at work. ICRP Publication 65, Ann ICRP 23(2).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. Oufni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabi, R., Oufni, L. A theoretical and experimental investigation of spatial distribution of radon in a typical ventilated room. MAPAN 33, 123–130 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: