Advertisement

MAPAN

, Volume 33, Issue 2, pp 159–164 | Cite as

Performance Analysis of Hybrid Optical Amplifiers for Super Dense Wavelength Division Multiplexing System in the Scenario of Reduced Channel Spacing

  • Chakresh Kumar
  • Rakesh Goyal
Original Paper
  • 73 Downloads

Abstract

In this paper, we have evaluated 200 channels super dense wavelength division multiplexing system (SD-WDM) with varying channel spacing from 100 to 900 GHz. Effect of proposed RAMAN-EDFA-RAMAN, RAMAN-EDFA, EDFA-SOA and SOA–SOA hybrid optical amplifier (HOA) have been traced out in term of the quality factor, bit error rate, gain, eye closure and output power respectively. It has also analyzed that RAMAN-EDFA-RAMAN HOA delivers the best rating outcome with the channel spacing of 3.125 GHz for long haul communication system. Further, dispersion compensation technique has also used to enhance the data rate up to 50 Gbps with the support of RAMAN-EDFA-RAMAN HOA. Maximum transmission distance of 400 km has covered by the same HOA with acceptable parameters in term of least bit error rate, good rating quality factor, and best-reported output power from the proposed system.

Keywords

Hybrid optical amplifier Super dense wavelength division multiplexing system Bit error rate Channel spacing RAMAN EDFA SOA Dispersion compensation 

Notes

Acknowledgments

The authors are grateful to IK Gujral Punjab Technical University, Kapurthala for providing the platform to carry out the research work.

References

  1. [1]
    H. Suzuki, M. Fujiwara, and K. Iwatsuki, Application of super-DWDM technologies to terrestrial terabit transmission systems. J. Lightwave Technol. 24 (2006) 1998–2005.CrossRefADSGoogle Scholar
  2. [2]
    H. Suzuki, N. Takachio, H. Masuda, and K. Iwatsuki, Super-dense WDM transmission technology in the zero-dispersion region employing distributed Raman amplification. IEEE J. Lightwave Technol. 21 (2003) 973–981.CrossRefADSGoogle Scholar
  3. [3]
    Y. Senoo, S. Kaneko, S. -Y. Kim, S. Kimura and N. Yoshimoto, Super-dense WDM detection technique with single coherent receiver employing wavelength-swept local light. Electron. Lett. 48 (2012) 107–108.CrossRefGoogle Scholar
  4. [4]
    T. Taniguchi, N. Sakurai, H. Kimura, and K. Kumozaki, Wavelength-swept super-dense wavelength-division-multiplexing (SD-WDM) transmitter: Theoretical and experimental study of performance degradation caused by inter-channel crosstalk. J. Lightwave Technol. 27 (2009) 5253–5260.CrossRefADSGoogle Scholar
  5. [5]
    S Singh and RS Kaler, Investigation of hybrid optical amplifiers for dense wavelength division multiplexed system with reduced spacings at higher bit rates. Fiber Integr. Opt. 31 (2012) 208–220.CrossRefADSGoogle Scholar
  6. [6]
    M. G. Oberg and N. A. Olsson, Crosstalk between intensity-modulated wavelength- division multiplexed signals in a semiconductor laser amplifier. IEEE J. Quantum Electron. 24 (1988) 52–59.CrossRefADSGoogle Scholar
  7. [7]
    S. Singhand, R.S. Kaler, Performance evaluation of hybrid optical amplifier for high-speed differential phase-shift keying-modulated optical signals. J Opt. Eng. 52 (2013) 096102.CrossRefADSGoogle Scholar
  8. [8]
    Ummy, M. A., Arend, M. F., Leng, L. N., Madamopoulos, N., and Dorsinville, R, Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber. J. Lightwave Technol. 27 (2009) 583–589.CrossRefADSGoogle Scholar
  9. [9]
    Huri, N. A. D., Hamzah, A., Arof, H., Ahmad, H., and Haruna, S. W, Hybrid flat gain C band optical amplifier with Zr-based erbium-doped fiber and semiconductor optical amplifier. J. Laser Phys. 21(2011) 202–204.CrossRefADSGoogle Scholar
  10. [10]
    Kawai, S., Masuda, H., Suzuki, K. I., and Aida, K, Wide-bandwidth and long distance WDM transmission using highly gain-flattened hybrid amplifier. IEEE Photon. Technol. Lett. 11 (1999) 886–888.CrossRefADSGoogle Scholar
  11. [11]
    H.S. Chung, J. Han, S.H. Chang and K. Kim, A Raman plus linear optical amplifier as an inline amplifier in a long-haul transmission of 16 channels 10 Gbit/s over single-mode fiber of 1040 km. J. Opt. Commun. 244 (2005) 141–145.CrossRefADSGoogle Scholar
  12. [12]
    T. Sakamoto, S.-i. Aozasa, M. Yamada and M. Shimizu, Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals.IEEE J. Lightwave Technol. 27 (2006) 2287–2295.CrossRefADSGoogle Scholar
  13. [13]
    Islam, M. N, Raman amplifiers for telecommunications-1 physical principles. Springer, Berlin (2004).CrossRefGoogle Scholar
  14. [14]
    Singh, S., and Kaler, R. S, Minimization of cross-gain saturation in wavelength division multiplexing by optimizing differential gain in semiconductor optical amplifiers. J. Fiber Integr. Opt. 25 (2006) 287–303.CrossRefADSGoogle Scholar
  15. [15]
    Singh, S., and Kaler, R. S, Simulation of DWDM signals using optimum span scheme with cascaded optimized semiconductor optical amplifiers. Int. J. Ectron Opt. 118 (2007) 74–82.Google Scholar
  16. [16]
    Ryu, U. C., Oh, K., Shin, W., and Paek, U. C, Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers. IEEE J. Quantum Electron. 38 (2002) 149–161.CrossRefADSGoogle Scholar
  17. [17]
    Huri, N. A. D., Hamzah, A., Arof, H., Ahmad, H., and Haruna, S. W, Hybrid flat gain C band optical amplifier with Zr-based erbium-doped fiber and semiconductor optical amplifier. J. Laser Phys. 21 (2011) 202–204.CrossRefADSGoogle Scholar
  18. [18]
    Tiwari, U., Rajan, K., and Thyagarajan, K, Multi-channel gain and noise figure evaluation of Raman/EDFA hybrid amplifiers. J. Opt. Commun. 281(2002) 1593–1597.CrossRefADSGoogle Scholar
  19. [19]
    Chang, S. H., Han, S. H., Chung H. S., and Kim, K, Transmission performance comparison of hybrid fiber amplifier. Paper no. TuA1-3. Proceedings of the 5th International Conference on Optical Internet, Jeju, Korea, (2006) 2–4.Google Scholar
  20. [20]
    Yeh, C. H., Lee, C. C., and Chi, S, S- plus C-band erbium-doped fiber amplifier in parallel structure. J. Opt. Commun. 241(2004) 443–447.CrossRefADSGoogle Scholar
  21. [21]
    Kaler, R. S., Kamal, T. S., and Sharma, A. K, Simulation results for DWDM systems with ultra-high capacity. J. Fiber Integr. Opt. 21 (2002) 361–369.CrossRefADSGoogle Scholar
  22. [22]
    Singh, S., and Kaler, R. S, Transmission performance of 20x10 Gb/s WDM signals using cascaded optimized SOAs with OOK and DPSK modulation formats. J. Opt. Commun. 266 (2006) 100–110.CrossRefADSGoogle Scholar
  23. [23]
    S. Singh and RS Kaler, Placement of hybrid optical amplifier in fiber optical communication systems. Opt. Int. J. Light Electron Opt. 123(2012) 1636–1639.CrossRefGoogle Scholar
  24. [24]
    R. Kumar, B. D. Pant and S. Maji, Development and characterization of a diaphragm-shaped force transducer for static force measurement. MAPAN-J. Metrol. Soc India. 32 (2017) 167–174.Google Scholar
  25. [25]
    B. Satish, B. Khurana and T. John, Measurement automation to implement evaluation procedure of fourterminal-pair capacitance standards using S-parameters. MAPAN-J. Metrol. Soc India. 32 (2017) 175–181.Google Scholar
  26. [26]
    K. Makhija, R. Borade, G. Shaifullah, S. Gujare, S. Ananthakrishnan and D. C. Gharpure, Space electromagnetic and plasma sensor (SEAPS): A laboratory prototype for a space payload. MAPAN-J. Metrol. Soc India. 3 (2016) 283–289.Google Scholar
  27. [27]
    G. Rakshit and A. Maitra, Simultaneous radar observations of vertical profile of rain features from space and ground at Ku and Ka bands at a tropical location. MAPAN-J. Metrol. Soc India. 3 (2016) 291–297.Google Scholar

Copyright information

© Metrology Society of India 2017

Authors and Affiliations

  1. 1.Research scholar, I. K.Gujral, Punjab Technical UniversityKapurthalaIndia
  2. 2.Assistant Professor, Guru Gobind Singh Indraprastha UniversityNew DelhiIndia
  3. 3.Assistant Professor, I. K.Gujral, Punjab Technical UniversityKapurthalaIndia

Personalised recommendations